WHY ARE THESE GIANT BRAINS IMPORTANT?

Most of the thinking so far done by these machines is with numbers. They have already solved problems in airplane design, astronomy, physics, mathematics, engineering, and many other sciences, that previously could not be solved. To find the solutions of these problems, mathematicians would have had to work for years and years, using the best known methods and large staffs of human computers.

These mechanical brains not only calculate, however. They also remember and reason, and thus they promise to solve some very important human problems. For example, one of these problems is the application of what mankind knows. It takes too long to find understandable information on a subject. The libraries are full of books: most of them we can never hope to read in our lifetime. The technical journals are full of condensed scientific information: they can hardly be understood by you and me. There is a big gap between somebody’s knowing something and employment of that knowledge by you or me when we need it. But these new mechanical brains handle information very swiftly. In a few years machines will probably be made that will know what is in libraries and that will tell very swiftly where to find certain information. Thus we can see that mechanical brains are one of the great new tools for finding out what we do not know and applying what we do know.

Chapter 2
LANGUAGES:
SYSTEMS FOR HANDLING INFORMATION

As everyone knows, it is not always easy to think. By thinking, we mean computing, reasoning, and other handling of information. By information we mean collections of ideas—physically, collections of marks that have meaning. By handling information, we mean proceeding logically from some ideas to other ideas—physically, changing from some marks to other marks in ways that have meaning. For example, one of your hands can express an idea: it can store the number 3 for a short while by turning 3 fingers up and 2 down. In the same way, a machine can express an idea: it can store information by arranging some equipment. The Harvard mechanical brain can store 132 numbers between 0 and 99,999,999,999,999,999,999,999 for days. When you want to change the number stored by your fingers, you move them: perhaps you need a half second to change the number stored by your fingers from 3 to 2, for example. In the same way, a machine can change a stored number by changing the arrangement of some equipment: the electronic brain Eniac can change a stored number in ¹/₅₀₀₀ of a second.

LANGUAGES

Since it is not always easy to think, men have given much attention to devices for making thinking easier. They have worked out many systems for handling information, which we often call languages. Some languages are very complete and versatile and of great importance. Others cover only a narrow field—such as numbers alone—but in this field they may be remarkably efficient. Just what is a language?

Every language is both a scheme for expressing meanings and physical equipment that can be handled. For example, let us take spoken English. The scheme of spoken English consists of more than 150,000 words expressing meanings, and some rules for putting words together meaningfully. The physical equipment of spoken English consists of (1) sounds in the air, and (2) the ears of millions of people, and their mouths and voices, by which they can hear and speak the sounds of English. For another example, let us take numbers expressed in the Arabic numerals and the rules of arithmetic. The scheme of this language contains only ten digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or their equivalents, and some rules for combining them. Sufficient physical equipment for this language might very well be a ten-column desk calculating machine with its counter wheels, gears, keys, etc. If we tried to exchange the physical equipment of these two languages, we would be blocked: the desk calculating machine cannot possibly express the meaningful combinations of 150,000 words, and sounds in the air are not permanent enough to express the steps of division of one large number by another.

SCHEMES FOR EXPRESSING MEANINGS

If we examine languages that have existed, we can observe a number of schemes for expressing meanings. In the table on [pp. 12-13] is a rough list of a dozen of them. From among these we can choose the schemes that are likely to be useful in mechanical brains. Schemes 11 and 12 are the schemes that have been predominantly used in machinery for computing. Scheme 12 consisting of combinations of just two marks, ✓, ✕, provides one of the best codes for mechanical handling of information. This scheme, called binary coding ([see Supplement 2]), is also useful for measuring the quantity of information.