We have seen (Vol. II) that heat motion when it reaches a sufficiently high rate throws the ether into a vibratory motion that we call light. However, this vibratory motion of the ether is set up long before it reaches the luminous stage; in other words, there are dark rays of the ether. We find that the electro-atomic motions of a conductor have the power to impress themselves upon the ether.

Fig. 1.

A is the primary line; a, the battery: b, the key. B is the secondary line in which is placed the galvanometer c.

Let us try another experiment to show that this is the case, not only, but that the impressed ether can transfer these impressions to still another conductor. Suppose we stretch two parallel wires for, say, half a mile, or any distance, only a few feet apart, and make of each a complete circuit by rounding the end of the course and returning the wire to the starting point (as shown in [Fig. 1]). Put in one of these circuits a battery, and a circuit-breaker (a common telegraph-key), and in the other circuit a galvanometer (an instrument for detecting the presence and measuring the intensity of a galvanic current, by means of a dial and a deflecting needle or pointer). Now if we touch the key and close the circuit in A, the needle of the galvanometer in B will swing in one direction from zero on the dial; and if we release the key, breaking the circuit in A, the needle will swing back in the opposite direction. In neither case will the needle stay deflected, but will at once return to zero.

This shows that when the battery current was allowed to complete its circuit through wire A by closing its key, an electrical action was instantly felt in wire B, although there was no material connection between them other than the air, which is a non-conductor.

The current in the second circuit is called an induced current. Why this current? According to one theory, when we close the primary circuit the surrounding ether is thrown into a peculiar state of strain that we will call magnetic or electrical lines of force. When the ether wave strikes the second wire there is a molecular movement from a state of rest to a state of static strain. During the time that the molecules are moving from the normal to the strained position in sympathy with the ether we have the condition of a dynamic current, which lasts only a moment. This state of strain continues till the circuit is opened (breaking the wire-line), when all the electrical lines of force vanish and the molecular strain of the second wire is relieved, and we again have the conditions, momentarily, for a current of the opposite polarity, and the needle will swing in the opposite direction because the molecules or atoms have, in their recoil to the natural state, moved in an opposite direction.

Going back to [Fig. 1], let us further study the phenomena under other conditions. In our first circuit (A) there is a battery and a circuit-breaker, which is a common telegraph-key. Now close the key so that a current will be established. (Remember that "current" is only a name for a condition of dynamic charge.) Place a piece of soft iron across the wire at right angles with the direction of the wire, when of course it will be at right angles with the direction of the current, and you will find now that the iron is more or less magnetic, depending upon the amount of current passing through the wire. If we wind a number of turns of insulated wire through which the current is passing around the iron the magnetism will be increased. In practice there are a certain number of turns and a certain sized wire that will give the best results with a given number of cells of battery (or a given voltage or pressure), operating in a closed circuit of a given resistance. All these questions are worked out mathematically in many standard books on the subject. It is not the intention in these talks to develop the science mathematically but to set out the fundamental physical facts and applications of electricity.

Under the conditions above named magnetism is developed in the soft iron bar. If we open the key the current will cease and the magnetism will vanish—that is to say, the molecules will turn back to their neutral position by their own attractions, as has been described in a previous chapter. Magnetism developed in this way is called electromagnetism. (See Chap. IV.) If we use a piece of hardened steel instead of the soft iron it will become magnetic and remain so when the circuit is opened, because the natural tendency of the molecules to turn back to the neutral position is not great enough to overcome the coercive force, or molecular friction, of hardened steel, as has been also described in a previous chapter. To make the best electromagnet we need qualities of iron just the opposite from those of the permanent magnet. For the former we need the purest of soft iron, well annealed (heated to redness and slowly cooled, making it less brittle), so that its molecules are free to turn; while for the latter we need hardened steel, so that when the molecules are once wrenched into the magnetic condition they cannot, of themselves, turn back to the neutral state. The great value of the electromagnet lies in its ability to readily discharge, or go back to the neutral state, when the current is broken.

Let us now go back to the beginning of our experiment. When we closed the key and established the current through the wire we found that a piece of iron held at right angles to the wire, although not touching it, became magnetic. We have already said that when the circuit was open, the battery being in circuit, there were electrical lines of force established in the ether, between the two poles of the battery, and that they were gathered up into the conducting wire when the circuit was closed. We now find that there are other lines of force of a different nature established in the ether when the circuit is closed. These we call magnetic lines of force, or the magnetic field of the charged wire, and they are established at right angles to the direction of the current. These magnetic lines of force acting through the ether from an electrically charged conductor are able to break up the natural molecular magnetic rings, referred to in Chapter IV, and turn all their like poles in the same direction—thus making one compound magnet of the iron which in the neutral state consisted of millions of little natural magnets whose attractions were satisfied by a joining of their unlike poles.