The difference in structure of snowflakes is chiefly due to the conditions under which they are formed. If the moisture is frozen too rapidly the molecular forces that are active in crystallization do not have time to carry out the work, in its completeness of detail, as it will where the freezing process, as well as the condensing process, goes on more slowly.
CHAPTER XVI.
METEORS.
Meteors are the tramps of interplanetary space. They sometimes try to steal a ride on the surface of the earth, but meet with certain destruction the moment they come within the aërial picket line of our world's defense against these wandering vagrants of the air. They have made many attempts to take this earth by storm, as it were, and many more will be made. They fire their missiles at us by the millions every year with a speed that is incredible, but thanks to the protecting influence of the great ocean of air that envelops our globe they become the victims of their own velocity.
Meteors or shooting stars are as old as the earth itself, and they are the material of which comets are made. Before it was determined what these meteors or shooting stars were, many theories were promulgated as to their origin. One was that they were masses of matter, large and small, projected by volcanic action from the face of the moon with such violence as to be brought within the attraction of the earth. Others supposed them to be the effect of certain phosphoric fluids that emanated from the earth and took fire in the upper regions of the atmosphere. This, however, was mere speculation and without any scientific basis of fact. Anyone who has been an observer of shooting stars will have learned that there are certain periods of the year when they are more numerous than at other times; notably in August and November. Then again there are longer periods of many years apart. By persistent observation it has been established that there are great numbers of schools or collections of cosmic matter that fly through interplanetary space, having definite orbits like the planets. Any one of these collections may be scattered through millions of miles in length. A comet is simply one of these wandering collections of meteoric stones having a nucleus or center where the particles are so condensed as to give it a reflecting surface something like the planets or the moon. This enables us to see the outline of the comet to the point where the fragments of matter become so scattered that they are no longer able to reflect sufficient light to reach our eyes. The fringe of a comet, however, may extend thousands or even millions of miles beyond the borders of luminosity.
There is scarcely a day or night in the year when more or less of these meteoric stones do not come within the region of our atmosphere, and when this happens the great velocity at which they travel is the means of their own destruction. They become intensely heated by friction against the atmosphere just as a bullet will when fired from a gun—only to a greater extent owing to the greater velocity. They disintegrate into dust which floats in the air for a time, when more or less of it is precipitated upon the surface of the earth. Disintegrated meteors, or star dust, as they are sometimes called, are often brought down by the rain or snow. Most of the shooting stars that we observe are very small, resembling fire-flies in the sky, but once in a while a very large one is seen moving across the face of the heavens, giving off brilliant scintillations that trail behind the meteor, making a luminous path that is visible for some seconds. These brilliant manifestations are due to one of two causes. Either there is a very large mass of incandescent matter or else they are so much nearer to us than in ordinary cases that they appear larger. It is more likely, however, that it is due to the former cause rather than the latter, from the fact of its apparently slow movement as compared with the smaller shooting stars. It has been determined by observation that the average meteor becomes visible at a point less than 100 miles above the earth's surface. It was found as far back as 1823 that out of 100 shooting stars twenty-two of them had an elevation of over twenty-four and less than forty miles; thirty-five, between forty and fifty miles; and thirteen between seventy and eighty miles. It was determined by Professor Herschel that out of sixty observations of shooting stars the average height of their first appearance was seventy-eight miles and their disappearance was at a point fifty-three miles above the earth.
It is a matter of history, however, that sometimes these meteoric stones descend to the surface of the earth before they are entirely disintegrated. A fine specimen of this kind is to be seen in the Smithsonian Institution. There are over forty specimens of these aërolites (air-stones) in the British Museum, labeled with the times and places of their fall. Instances of falling to the earth are so rare that there is little to fear from these wandering missiles of the air. We do not remember a case where life or property has suffered from the fall of a meteor.
This brings us to the consideration of the part which the great air envelope surrounding the earth plays as a protection against many outside influences. For instance, if it were not for the air, millions of these meteoric stones would be showered upon our earth every year and at certain times every day, which would render the earth untenable for human existence. We should be at the mercy of those wandering comets whose fringes strike our atmosphere more or less deeply at frequent intervals. It is not impossible that the earth may at some time pass directly through one, and yet there is little danger that in such a case there would be more than an unusual display of celestial fireworks.