From the facts that have been above stated it will be apparent to anyone that the number of these meteoric stones in the air is being constantly reduced by their constant collision with the atmosphere and consequent reduction to ashes or dust. Another conclusion is that the earth must be gradually, but imperceptibly perhaps, increasing in size on account of the constant settling upon its surface of meteoric dust.


CHAPTER XVII.

THE SKY AND ITS COLOR.

In the chapters on light in Vol. II. it will be stated that we see all objects by a reflected light, except those that are self-luminous, such as the sun or any other source of light. We see the moon and many of the planets entirely by reflection. There are myriads of smaller objects, too small to be seen as such, even under a microscope, that still have a power to reflect light that is sensible to our vision. The air surrounding the globe is literally filled with these microscopic light reflectors. They serve to give us a diffused light which enables us to see clearly all visible objects. We have all noticed the effect of a single electric arc light, situated at a distance from any other source of light, and how it casts extremely dark shadows and very high lights; so much so that it is difficult to see an object perfectly in this light, because the part of an object that is under the direct rays of the lamp is so highly illuminated that the shadow, by comparison, has the effect of simply a dark blot without form or shape. Many of you have noticed in a country village, where the streets are lighted with electric arc lamps, what a difference there is in the illuminating effect between a clear and a foggy night. When there is a fog, or when the clouds hang low down, we get a reflection from these which tends to diffuse and soften the powerful light rays that are sent out by these lamps. This effect is especially noticeable when the night is only moderately foggy. Each globule of moisture floating in the air becomes a reflector of light, and by myriads of reflections and counter reflections the light (which on a clear night is concentrated) is diffused over a large area, producing an illumination which for practical purposes is far superior to that produced on a clear night. When the latter condition prevails the rays of light are so intense on objects immediately surrounding the lamps that one is blinded; so that the places which are in shadow seem darker than they would be if there were no light at all. The only way to prevent this effect is to have the lights so close together that there will be cross lights, which tend to break up the intensity of the shadows. This principle of light diffusion is taken advantage of to produce an even illumination in stores that are lighted only on one or two sides. This is effected by a series of prisms or reflecting surfaces that are cast upon the panes of glass.

If now there were no atmosphere—or, to state it differently—if there were no floating substances in the atmosphere, the sun would produce an effect upon the earth similar to that of a single electric light. The lights would be extremely high, and the shadows extremely dense. To one looking off into space, the sky, instead of having the blue appearance that we see, would have the effect of looking into a deep, dark abyss without illumination.

Tyndall has shown us by a beautiful experiment that if there be in a glass tube a mixture of gases related to each other in a certain way chemically, they will combine into small globules or particles similar to moisture in the air. If now a beam of light is thrown upon this tube and a dark screen put behind it, we shall, in the beginning of the experiment, simply see the dark screen. As soon, however, as the molecules of the gases have combined in sufficient numbers to produce particles of sensible size we begin to have a reflection of light from them, the color of which is constantly changing as the combining particles grow in size. At a certain stage in its progress the color which the mixture of gases assumes is a beautiful azure blue, rivaling in purity the finest skies of Greece or southern Italy.

The sun is the great lamp that illuminates the world, while the atmosphere, which is filled with particles of various substances, becomes the shade of the lamp which diffuses and softens the light and gives it its color tones, whether of warmth or coldness. We could not well do without the reflected light of the sky. The poetry of life would be sadly marred. The beautiful effects of color and purity of tone would be wanting. We need to bathe in light as much as in water, and the character of the light is almost as important as the character of the water. Imagine a world with an atmosphere devoid of all substances that would in any way reflect light or give to it softness or color tone. Imagine a sun or a moon without visible rays—for without a reflecting atmosphere there would be none. Imagine a sky that was no sky at all, but only a dark void, with no protecting vault. Think of the shadows, so dark that you could see nothing in them. These would be some of the effects that would come from an atmosphere that had no sky substance in it. Imagine the world lighted by one great arc light. The reflex action upon the race living in such a light would be anything but desirable. The world would develop into an arc-light civilization—if one can imagine what that would be like; certainly one of intensely violent contrasts. Look on this picture and let us be thankful for the blue sky and golden sunsets.

"But," you ask, "why is the sky blue?"