In no phase of the remarkable educational development made by nations, since the middle of the nineteenth century, has there been a more important expansion of the educational service than in the creation of schools dealing with the applications of science to the affairs of the national life. Still more, no extension of instruction into new fields has ever yielded material benefits, increased productivity, alleviated suffering, or multiplied comforts and conveniences as has this new development in applied scientific education during the past three quarters of a century.

SCIENCE INSTRUCTION IN THE SCHOOLS. At first this new work came in, as we have seen (p. 774), but slowly, and its introduction into the secondary schools of France, Germany, England, the United States, and other nations for a time met with bitter opposition from the partisans of the older type of intellectual training. In Germany it was not until after Emperor William II came to the throne (1888) that the Realschulen really found a warm partisan, he demanding (1890), in the name of the national welfare, that the secondary schools "depart entirely from the basis that has existed for centuries—the old monastic education of the Middle Ages"—and that "young Germans and not young Greeks and Romans" be trained in the schools (R. 368). During his reign the Realschulen (six-year course) and Oberrealschulen (nine-year course) were especially favored, while permission to found additional Gymnasien became hard to obtain. The scientific course in the French Lycées similarly did not prosper until after the coming of the Third Republic (1871) and the rise of modern scientific and industrial demands. In England it was not until after 1870 that the endowed secondary schools began to include science instruction, and laboratory instruction in the sciences began to be introduced into the secondary schools of the United States at about the same time. In the United States, too, the first manual-training high school was not established until 1880, but by 1890 the creation of such schools was clearly under way. Other nations—Switzerland, Holland, the Scandinavian countries—also began to include laboratory science instruction in the work of their secondary schools at about the same time. The decade of the seventies witnessed a rising interest in instruction in science which carried such work into the secondary schools of all progressive nations. To-day, in nearly all lands, we find secondary-school courses in science, or special secondary schools for scientific instruction, occupying a position of at least equal importance with the older classical courses or schools. As science instruction has become organized, and a knowledge of the principles of science has become diffused, object lessons, Realien, nature study, or elementary science instruction has very generally been put into the elementary or people's schools for the younger pupils. As a result, young people finishing the elementary schools to-day know more relating to the laws of the universe, and the applications of these laws to human life and industry, than did distinguished scholars two centuries ago.

All this work in the elementary schools, middle schools, people's high schools, secondary schools, or special technical schools of middle or secondary grade has been of much value in diffusing scientific knowledge and scientific methods of thinking and working among large numbers of people, as well as in revealing to many the possibilities of a scientific career. The great and important development of scientific instruction, however, since about 1860, has been in the fields of advanced applied science or technical education, and has taken place chiefly in new and higher specialized schools and research foundations. The fields in which the greatest scientific advances have been made, and to which we shall here briefly refer, have been engineering, agriculture, and medicine.

THE BEGINNINGS OF TECHNICAL EDUCATION. The beginnings of technical education were made earliest in France, Germany, and the United States, and in the order named. France and German lands, but particularly France, inherited through the monasteries what survived of the old Roman skills and technical arts. In the building of bridges, roads, fortifications, aqueducts, and imposing public buildings, the Romans had shown the possession of engineering ability of a high order. Some of this knowledge was retained by the monks of the early Middle Ages, as is evidenced by the monasteries they erected and the churches they built. Later it passed to others, and is evidenced in the great cathedrals and town halls of Europe, and particularly of northern France. In military and civil engineering the French were also the true successors of the Romans. As early as 1747 a special engineering school for bridges and highways (École des Ponts et Chaussées) had been created, and a little later a special school to train mining engineers (École des Mines) was added. These were the first of the world's higher technical schools. After the Revolution, the new need for military and medical knowledge, as well as the general French interest in applied science, led to the creation of a large number of important higher technical institutions (list, p. 518), most of which have persisted to the present and been enlarged and extended with time. Napoleon also created a School of Arts and Trades (R. 282), and a number of military schools (p. 590).

In German lands there was early founded a series of trade schools, [7] which have in time been developed into important technical universities. After the creation of the Imperial German Empire, in 1871, these schools were especially favored by the government, and their work was raised to a rank equal to that of the older universities. To the excellent training given in these institutions the German leadership in applied science and industry, before 1914, was largely due. [8] It has been the particular function of these technical universities to apply scientific knowledge to the industries and the arts, and to show the technical schools beneath and the directors of German industries how further to apply it (R. 371). Of their work a recent Report [9] well says:

While in other countries the development of science has been academic, in Germany every new principle elaborated by science has revolutionized some industry, modified some manufacturing process, or opened up an entirely new field of commercial exploitation. In the chemical industries of Germany … there is one trained university chemist for every forty working-people. It is important to realize that the development of Germany's manufactures and commerce has depended not upon the establishment of any monopoly in the domain of science, not upon any special advancement of science within her own boundaries, but primarily upon the practical utilization of the results of scientific research in Germany and other countries.

The creation of the United States Military Academy, at West Point, in 1802, marks the American beginnings in technical education. In 1824 the Rensselaer Polytechnic Institute was begun, largely as a manual-labor school after the Fellenberg plan, to give instruction "in the applications of science to the common purposes of life," and about 1850 this developed into one of the earliest of our four-year engineering colleges. In 1846 the United States organized a college for naval engineering, at Annapolis, to do for the Navy what West Point had done for the Army. In 1861 the Massachusetts Institute of Technology was founded, opening its doors in 1865. This was the first of a number of important new engineering colleges, and eight others had been established, by private funds, before 1880.

The development in England came a little later. Good engineering schools have since been developed in connection with the new municipal universities, while good engineering colleges have also been created at Oxford and Cambridge, as well as at the Scottish and Irish universities.

THE NEW IMPULSES TO DEVELOPMENT. During the first six decades of the nineteenth century, France, the German States, and the United States were slowly moving toward the creation of special schools for technical education. After about 1860 the movement increased with great rapidity. A number of events contributed to this change in rate of development, the most important of which were:

1. The development attained by pure science, by about 1860. (See chapter XXVII, part II, p. 723.)