In order to increase the ionization in the testing vessel, the rays passed through 20 to 25 slits of equal width, placed side by side. This was arranged by cutting grooves at regular intervals in side-plates into which brass plates were slipped. The width of the slit varied in different experiments between ·042 cm. and ·1 cm. The magnetic field was applied perpendicular to the plane of the paper, and parallel to the plane of the slits. The rays are thus deflected in a direction perpendicular to the plane of the slits and a very small amount of deviation is sufficient to cause the rays to impinge on the sides of the plate where they are absorbed.

The testing vessel and system of plates were waxed to a lead plate P so that the rays entered the vessel V only through the aluminium foil. It is necessary in these experiments to have a steady stream of gas passing downwards between the plates in order to prevent the diffusion of the emanation from the radium upwards into the testing vessel. The presence in the testing vessel of a small amount of this emanation, which is always given out by radium, would produce great ionization and completely mask the effect to be observed. For this purpose, a steady current of dry electrolytic hydrogen of about 2 c.c. per second was passed into the testing vessel; it then streamed through the porous aluminium foil, and passed between the plates carrying the emanation with it away from the apparatus. The use of a stream of hydrogen instead of air greatly simplifies the experiment, for it increases the ionization current due to the α rays in the testing vessel, and at the same time greatly diminishes that due to the β and γ rays. This is caused by the fact that the α rays are much more readily absorbed in air than in hydrogen, while the rate of production of ions due to the β and γ rays is much less in hydrogen than in air. The intensity of the α rays after passing between the plates is consequently greater when hydrogen is used; and since the rays pass through a sufficient distance of hydrogen in the testing vessel to be largely absorbed, the total amount of ionization produced by them is greater with hydrogen than with air.

The following is an example of an observation on the magnetic deviation:—

Pole-pieces 1·90 × 2·50 cms.

Strength of field between pole-pieces 8370 units.

Apparatus of 25 parallel plates of length 3·70 cms., width ·70 cm., with an average air-space between plates of ·042 cm.

Distance of radium below plates 1·4 cm.

Rate of discharge of electroscope in volts per minute
(1) Without magnetic field8·33
(2) With magnetic field1·72
(3) Radium covered with thin layer of mica to absorb all α rays0·93
(4) Radium covered with mica and magnetic field applied0·92

The mica plate, ·01 cm. thick, was of sufficient thickness to absorb completely all the α rays, while it allowed the β rays and γ rays to pass through without appreciable absorption. The difference between (1) and (3), 7·40 volts per minute, gives the rate of discharge due to the α rays alone; the difference between (2) and (3), 0·79 volts per minute, that due to the α rays not deviated by the magnetic field employed.

The amount of α rays not deviated by the field is thus about 11% of the total. The small difference between (3) and (4) measures the small ionization due to the β rays, for they would be completely deviated by the magnetic field; (4) comprises the effect of the γ rays together with the natural leak of the electroscope in hydrogen.