In this experiment there was a good deal of stray magnetic field acting on the rays before they reached the pole-pieces. The diminution of the rate of discharge due to the α rays was found to be proportional to the strength of field between the pole-pieces. With a more powerful magnetic field, the whole of the α rays were deviated, showing that they consisted entirely of projected charged particles.

In order to determine the direction of deviation of the rays, the rays were passed through slits one mm. in width, each of which was half covered with a brass strip. The diminution of the rate of discharge in the testing vessel for a given magnetic field in such a case depends upon the direction of the field. In this way it was found that the rays were deviated in the opposite sense to the cathode rays. Since the latter consist of negatively charged particles, the α rays must consist of positively charged particles.

These results were soon after confirmed by Becquerel[[142]], by the photographic method, which is very well adapted to determine the character of the path of the rays acted on by a magnetic field. The radium was placed in a linear groove cut in a small block of lead. Above this source, at a distance of about 1 centimetre, was placed a metallic screen, formed of two plates, leaving between them a narrow opening parallel to the groove. Above this was placed the photographic plate. The whole apparatus was placed in a strong magnetic field parallel to the groove. The strength of the magnetic field was sufficient to deflect the β rays completely away from the plate. When the plate was parallel to the opening, there was produced on it an impression, due to the α rays alone, which became more and more diffuse as the distance from the opening increased. This distance should not exceed 1 or 2 centimetres on account of the absorption of the rays in air. If, during the exposure, the magnetic field is reversed for equal lengths of time, on developing the plate two images of the α rays are observed which are deflected in opposite directions. This deviation, even in a strong field, is small though quite appreciable and is opposite in sense to the deviation observed for the β or cathodic rays from the same material.

M. Becquerel[[143]], by the same method, found that the α rays from polonium were deviated in the same direction as the α rays from radium; and thus that they also consist of projected positive bodies. In both cases, the photographic impressions were sharply marked and did not show the same diffusion which always appears in photographs of the β rays.

90. Electrostatic deviation of the α rays. If the rays are charged bodies, they should be deflected in passing through a strong electric field. This was found by the writer to be the case, but the electric deviation is still more difficult to detect than the magnetic deviation, as the intensity of the electric field must of necessity be less than that required to produce a spark in the presence of radium. The apparatus was similar to that employed for the magnetic deviation ([Fig. 32]) with this exception, that the brass sides which held the plates in position, were replaced by ebonite. Alternate plates were connected together and charged to a high potential by means of a battery of small accumulators. The discharge in the electroscope, due to the α rays, was found to be diminished by application of the electric field. With plates ·055 cm. apart and 4·5 cms. high, the diminution was only 7% with a P.D. of 600 volts between the slits. With a special arrangement of plates, with slits only ·01 cm. apart, the discharge was diminished about 45% with an electric field corresponding to 10,000 volts per cm.

91. Determination of the constants of the rays. If the deviation of the rays in both an electric and magnetic field is known, the values of the velocity of the rays, and the ratio e/m of the charge of the particle to its mass can be determined by the method, first used by J. J. Thomson for the cathode rays, which is described in section 50. From the equations of a moving charged body, the radius of curvature ρ of the path of the rays in a magnetic field of strength H perpendicular to the path of the rays is given by

m

Hρ = ---- V .

e

If the particle, after passing through a uniform magnetic field for a distance l1, is deviated through a small distance d1 from its original direction,