The argument is sometimes advanced that inasmuch as for the same, or a smaller, capital outlay as is required to instal a non-automatic apparatus large enough to supply at one charging the maximum amount of light and heat that can ever be needed on the longest winter's night, an automatic plant adequate to make gas for two or three evenings can be laid down, the latter must be preferable, because the attendant, in the latter case, will only need to enter the generator-house two or three times a week. Such an argument is defective because it ignores the influence of habit upon the human being. A watch which must be wound every day, or a clock which must be wound every week, on a certain day of the week, is seldom permitted to run down; but a watch requiring to be re-wound every other day, or a fourteen-day clock (used as such), would rarely be kept going. Similarly, an acetylene generator might be charged once a week or once a day without likelihood of being forgotten; but the operation of charging at irregular intervals would certainly prove a nuisance. With a non-automatic apparatus containing all its gas in the holder, the attendant would note the position of the bell each morning, and would introduce sufficient carbide to fill the holder full, or partly full, as the case might be; with an automatic apparatus he would be tempted to trust that the carbide holders still contained sufficient material to last another night.

The automatic system of generating acetylene has undoubtedly one advantage in those climates where frost tends to occur frequently, but only to prevail for a short period. As the apparatus is in operation during the evening hours, the heat evolved will, or can be made to, suffice to protect the apparatus from freezing until the danger has passed; whereas if the gas is generated of a morning in a non-automatic apparatus the temperature of the plant may fall to that of the atmosphere before evening, and some portion may freeze unless special precautions are taken to protect it.

It was shown in Chapter II that overheating is one of the chief troubles to be guarded against in acetylene generators, and that the temperature attained is a function of the speed at which generation proceeds. Seeing that in an automatic apparatus the rate of decomposition depends on the rate at which gas is being burnt, while in a non-automatic generator it is, or may be, under no control, the critic may urge that the reaction must take place more slowly and regularly, and the maximum temperature therefore be lower, when the plant works automatically. This may be true if the non-automatic generator is unskilfully designed or improperly manipulated; but it is quite feasible to arrange an apparatus, especially one of the carbide-to-water or of the flooded-compartment type, in such fashion that overheating to an objectionable extent is rendered wholly impossible. In a non-automatic apparatus the holder is nothing but a holder and may be placed wherever convenient, even at a distance from the generating plant; in an automatic apparatus the holder, or a small similarly constructed holder placed before the main storage vessel, has to act as a water-supply governor, as the releasing gear for certain carbide-food mechanism, or indeed as the motive power of such mechanism; and accordingly it must be close to the water or carbide store, and more or less intimately connected by means of levers, or the like, with the receptacle in which decomposition occurs. Sometimes the holder surrounds, or is otherwise an integral part of, the decomposing chamber, the whole apparatus being made self-contained or a single structure with the object of gaining compactness. But it is evident that such methods of construction render additionally awkward, or even hazardous, any repair or petty operation to the generating portion of the plant; while the more completely the holder is isolated from the decomposing vessels the more easily can they be cleaned, recharged, or mended, without blowing off the stored gas and without interfering with the action of any burners that may be alight at the time. Owing to the ingenuity of inventors, and the experience they have acquired in the construction of automatic acetylene apparatus during the years that the gas has been in actual employment, it is going too far boldly to assert that non-automatic generators are invariably to be preferred before their rivals. Still in view of the nature of the labour which is likely to be bestowed on any domestic plant, of the difficulty in having repairs or adjustments done quickly in outlying country districts, and of the inconvenience, if not risk, attending upon any failure of the apparatus, the greater capital outlay, and the larger space required by non-automatic generators are in most instances less important than the economy in space and prime cost characteristic of automatic machines when the defects of each are weighed fairly in the balance. Indeed, prolonged experience tends to show that a selection between non-automatic and automatic apparatus may frequently be made on the basis of capacity. A small plant is undoubtedly much more convenient if automatic; a very large plant, such as that intended for a public supply, is certainly better if non-automatic, but between these two extremes choice may be exercised according to local conditions.

CONTROL OF THE CHEMICAL REACTION.--Coming now to study the principles underlying the construction of an acetylene generator more closely it will be seen that as acetylene is produced by bringing calcium carbide into contact with water, the chemical reaction may be started either by adding the carbide to the water, or by adding the water to the carbide. Similarly, at least from the theoretical aspect, the reaction, may be caused to stop by ceasing to add carbide to water, or by ceasing to add water to carbide. Apparently if water is added by degrees to carbide, until the carbide is exhausted, the carbide must always be in excess; and manifestly, if carbide is added in small portions to water, the water must always be in excess, which, as was argued in Chapter II., is emphatically the more desirable position of affairs. But it in quite simple to have carbide present in large excess of the water introduced when the whole generator is contemplated, and yet to have the water always in chemical excess in the desired manner; because to realise the advantages of having water in excess, it is only necessary to subdivide the total charge of carbide into a number of separate charges which are each so small that more than sufficient water to decompose and flood one of them is permitted to enter every time the feed mechanism comes into play, or (in a non-automatic apparatus) every time the water-cock is opened; so arranging the charges that each one is protected from the water till its predecessor, or its predecessor, have been wholly decomposed. Thus it is possible to regard either the carbide or the water as the substance which has to be brought into contact with the other in specified quantity. It is perhaps permissible to repeat that in the construction of an automatic generator there is no advantage to be gained from regulating the supply of both carbide and water, because just as the mutual decomposition will begin immediately any quantity of the one meets any quantity of the other, so the reaction will cease (except in one case owing to "after-generation") directly the whole of that material which is not in chemical excess has been consumed-quite independently of the amount of the other material left unattacked. Being a liquid, and possessing as such no definite shape or form of its own irrespective of the vessel in which it is held, water is by far the more convenient of the two substances to move about or to deliver in predetermined volume to the decomposing chamber. A supply of water can be started instantaneously or cut oil as promptly by the movement of a cock or valve of the usual description; or it may be allowed to run down a depending pipe in obedience to the law of gravitation, and stopped from running down such a pipe by opposing to its passage a gas pressure superior to that gravitational force. In any one of several obvious ways the supply of water to a mass of carbide may be controlled with absolute certainty, and therefore it should apparently follow that the make of acetylene should be under perfect control by controlling the water current. On the other hand, unless made up into balls or cartridges of some symmetrical form, calcium carbide exists in angular masses of highly irregular shape and size. Its lumps alter in shape and size directly liquid water or moisture reaches them; a loose more or loss gritty powder, or a damp cohesive mud, being produced which is well calculated to choke any narrow aperture or to jam any moving valve. It is more difficult, therefore, by mechanical agency to add a supply of carbide to a mass of water than to introduce a supply of water to a stationary mass of carbide; and far more difficult still to bring the supply of carbide under perfect control with the certainty that the movement shall begin and stop immediately the proper time arrives.

But assuming the mechanical difficulties to be satisfactorily overcome, the plan of adding carbide to a stationary mass of water has several chemical advantages, first, because, however the generator be constructed, water will be in excess throughout the whole time of gas production; and secondly, because the evolution of acetylene will actually cease completely at the moment when the supply of carbide is interrupted. There is, however, one particular type of generator in which as a matter of fact the carbide is the moving constituent, viz., the "dipping" apparatus (cf. infra), to which these remarks do not apply; but this machine, as will be seen directly, is, illogically perhaps, but for certain good reasons, classed among the water-to-carbide apparatus. All the mechanical advantages are in favour, as just indicated, of making water the moving substance; and accordingly, when classified in the present manner, a great majority of the generators now on the markets are termed water-to-carbide apparatus. Their disadvantages are twofold, though these may be avoided or circumvented: in all types save one the carbide is in excess at the immediate place and time of decomposition; and in all types without exception the carbide in the whole of the generator is in excess, so that the phenomenon of "after- generation" occurs with more or less severity. As explained in the last chapter, after-generation is the secondary production of acetylene which takes place more or less slowly after the primary reaction is finished, proceeding either between calcium hydroxide, merely damp lime, or damp gas and calcium carbide, with an evolution of more acetylene. As it is possible, and indeed usual, to fit a holder of some capacity even to an automatic generator, the simple fact that more acetylene is liberated after the main reaction is over does not matter, for the gas can be safely stored without waste and entirely without trouble or danger. The real objection to after-generation is the difficulty of controlling the temperature and of dissipating the heat with which the reaction is accompanied. It will be evident that the balance of advantage, weighing mechanical simplicity against chemical superiority, is somewhat even between carbide-to-water and water-to-carbide generators of the proper type; but the balance inclines towards the former distinctly in the ease of non-automatic apparatus, and points rather to the latter when automatism is desired. In the early days of the industry it would have been impossible to speak so favourably of automatic carbide-to-water generators, for they were at first constructed with absurdly complicated and unreliable mechanism; but now various carbide-feed gears have been devised which seem to be trustworthy even when carbide not in cartridge form is employed.

NON-AUTOMATIC CARBIDE-TO-WATER GENERATORS.--There is little to be said in the present place about the principles underlying the construction of non-automatic generators. Such apparatus may either be of the carbide-to- water or the water-to-carbide type. In the former, lumps of carbide are dropped by hand down a vertical or sloping pipe or shoot, which opens at its lower end below the water-level of the generating chamber, and which is fitted below its mouth with a deflector to prevent the carbide from lodging immediately underneath that mouth. The carbide falls through the water which stands in the shoot itself almost instantaneously, but during its momentary descent a small quantity of gas is evolved, which produces an unpleasant odour unless a ventilating hood is fixed above the upper end of the tube. As the ratio of cubical contents to superficial area of a lump is greater as the lump itself is larger, and as only the outer surface of the lump can be attacked by the water in the shoot during its descent, carbide for a hand-fed carbide-to-water generator should be in fairly large masses--granulated material being wholly unsuitable--and this quite apart from the fact that large carbide is superior to small in gas-making capacity, inasmuch as it has not suffered the inevitable slight deterioration while being crushed and graded to size. If carbide is dropped too rapidly into such a generator which is not provided with a false bottom or grid for the lumps to rest upon, the solid is apt to descend among a mass of thick lime sludge produced at a former operation, which lies at the bottom of the decomposing chamber; and here it may be protected from the cooling action of fresh water to such an extent that its surface is baked or coated with a hard layer of lime, while overheating to a degree far exceeding the boiling-point of water may occur locally. When, however, it falls upon a grid placed some distance above the bottom of the water vessel, the various convection currents set up as parts of the liquid become warm, and the mechanical agitations produced by the upward current of gas rinse the spent lime from the carbide, and entirely prevent overheating, unless the lumps are excessively large in size. If the carbide charged into a hand-fed generator is in very large lumps there is always a possibility that overheating may occur in the centre of the masses, due to the baking of the exterior, even if the generator is fitted with a reaction grid. Manifestly, when carbide in lumps of reasonable size is dropped into excess of water which is not merely a thick viscid cream of lime, the temperature cannot possibly exceed the boiling-point--i.e., 100° C.--provided always the natural convection currents of the water are properly made use of.

The defect which is, or rather which may be, characteristic of a hand-fed carbide-to-water generator is a deficiency of gas yield due to solubility. At atmospheric temperatures and pressure 10 volumes of water dissolve 11 volumes of acetylene, and were the whole of the water in a large generator run to waste often, a sensible loss of gas would ensue. If the carbide falls nearly to the bottom of the water column, the rising gas is forced to bubble through practically the whole of the liquid, so that every opportunity is given it to dissolve in the manner indicated till the liquid is completely saturated. The loss, however, is not nearly so serious as is sometimes alleged, because (1) the water becomes heated and so loses much of its solvent power; and (2) the generator is worked intermittently, with sufficiently long intervals to allow the spent lime to settle into a thick cream, and only that thick cream is run off, which represents but a small proportion of the total water present. Moreover, a hand-fed carbide-to-water generator will work satisfactorily with only half a gallon [Footnote: The United States National Board of Fire Underwriters stipulates for the presence of 1 (American) gallon of water for every 1 lb. of carbide before such an apparatus is "permitted." This quantity of liquid might retain nearly 4 per cent. of the total acetylene evolved. Even this is an exaggeration; for neither her, nor in the corresponding figure given in the text, is any allowance made for the diminution in solvent power of the water as it becomes heated by the reaction.] of liquid present for every 1 lb. of carbide decomposed, and were all this water run off and a fresh quantity admitted before each fresh introduction of carbide, the loss of acetylene by dissolution could not exceed 2 per cent. of the total make, assuming the carbide to be capable of yielding 5 cubic feet of gas per lb. Admitting, however, that some loss of gas does occur in this manner, the defect is partly, if not wholly, neutralised by the concomitant advantages of the system: (1) granted that the generator is efficiently constructed, decomposition of the carbide is absolutely complete, so that no loss of gas occurs in this fashion; (2) the gas is evolved at a low temperature, so that it is unaccompanied, by products of polymerisation, which may block the leading pipes and must reduce the illuminating power; (3) the acetylene is not mixed with air (as always happens at the first charging of a water-to- carbide apparatus), which also lowers the illuminating power; and (4) the gas is freed from two of its three chief impurities, viz., ammonia and sulphuretted hydrogen, in the generating chamber itself. To prevent the loss of acetylene by dissolution, carbide-to-water generators are occasionally fitted with a reaction grid placed only just below the water-level, so that the acetylene has no more than 1 inch or so of liquid to bubble through. The principle is wrong, because hot water being lighter than cold, the upper layers may be raised to the boiling-point, and even converted into steam, while the bulk of the liquid still remains cold; and if the water actually surrounding the carbide is changed into vapour, nearly all control over the temperature attending the reaction is lost.

The hand-fed carbide-to-water generator is very simple and, as already indicated, has proved itself perhaps the best type of all for the construction of very large installations; but the very simplicity of the generator has caused it more than once to be built in a manner that has not given entire satisfaction. As shown at L in Fig. 6, p. 84, the generator essentially consists of a closed cylindrical vessel communicating at its top with a separate rising holder. At one side as drawn, or disposed concentrically if so preferred, is an open-mouthed pipe or shoot (American "shute") having its lower open extremity below the water-level. Into this shoot are dropped by hand or shovel lumps of carbide, which fall into the water and there suffer decomposition. As the bottom of the shoot is covered with water, which, owing to the small effective gas pressure in the generator given by the holder, stands a few inches higher in the shoot than in the generator, gas cannot escape from the shoot; because before it could do so the water in the generator would have to fall below the level of the point a, being either driven out through the shoot or otherwise. Since the point b of the shoot extends further into the generator than a, the carbide drops centrally, and as the bubbles of gas rise vertically, they have no opportunity of ascending into the shoot. In practice, the generator is fitted with a conical bottom for the collection of the lime sludge and with a cock or other aperture at the apex of the cone for the removal of the waste product. As it is not desirable that the carbide should be allowed to fall directly from the shoot into the thicker portion of the sludge within the conical part of the generator, one or more grids is usually placed in the apparatus as shown by the dotted lines in the sketch. It does not seem that there is any particular reason for the employment of more than one grid, provided the size of the carbide decomposed is suited to the generator, and provided the mesh of the grid is suited to the size of the carbide. A great improvement, however, is made if the grid is carried on a horizontal spindle in such a way that it can be rocked periodically in order to assist in freeing the lumps of carbide from the adhering particles of lime. As an alternative to the movable grid, or even as an adjunct thereto, an agitator scraping the conical sides of the generator may be fitted which also assists in ensuring a reasonably complete absence of undecomposed carbide from the sludge drawn off at intervals. A further point deserves attention. If constructed in the ideal manner shown in Fig. 6 removal of some of the sludge in the generator would cause the level of the liquid to descend and, by carelessness, the level might fall below the point a at the base of the shoot. In these circumstances, if gas were unable to return from the holder, a pressure below that of the atmosphere would be established in the gas space of the generator and air would be drawn in through the shoot. This air might well prove a source of danger when generation was started again. Any one of three plans may be adopted to prevent the introduction of air. A free path may be left on the gas-main passing from the generator to the holder so that gas may be free to return and so to maintain the usual positive pressure in the decomposing vessel; the sludge may be withdrawn into some vessel so small in capacity that the shoot cannot accidentally become unsealed; or the waterspace of the generator may be connected with a water-tank containing a ball-valve attached to a constant service of water be that liquid runs in as quickly as sludge is removed, and the level remains always at the same height. The first plan is only a palliative and has two defects. In the first place, the omission of any non-return valve between, the generator and the next item in the train of apparatus is objectionable of itself; in the second place, should a very careless attendant withdraw too much liquid, the shoot might become unsealed and the whole contents of the holder be passed into the air of the building containing the apparatus through the open mouth of the shoot. The second plan is perfectly sound, but has the practical defect of increasing the labour of cleaning the generator. The third plan is obviously the best. It can indeed be adopted where no real constant service of water is at hand by connecting the generator to a water reservoir of relatively large size and by making the latter of comparatively large transverse area, in proportion to its depth; so that the escape of even a largo volume of water from the reservoir may not involve a large reduction in the level at which it stands there.

The dust that always clings to lumps of carbide naturally decomposes with extreme rapidity when the material is thrown into the shoot of a carbide- to-water generator, and the sudden evolution of gas so produced has on more than one occasion seriously alarmed the attendant on the plant. Moreover, to a trifling extent the actual superficial layers of the carbide suffer attack before the lumps reach the true interior of the generator, and a small loss of gas thereby occurs through the open mouth of the shoot. To remove these objections to the hand-fed generator it has become a common practice in large installations to cause the lower end of the shoot to dip under the level of some oil contained in an appropriate receptacle, the carbide falling into a basket carried upon a horizontal spindle. The basket and its support are so arranged that when a suitable charge of carbide has been dropped into it, a partial rotation of an external hand-wheel lifts the basket and carbide out of the oil into an air-tight portion of the generator where the surplus oil can drain away from the lumps. A further rotation of the hand-wheel then tips the basket over a partition inside the apparatus, allowing the carbide to fall into the actual decomposing chamber. This method of using oil has the advantage of making the evolution of acetylene on a large scale appear to proceed more quietly than usual, and also of removing the dust from the carbide before it reaches the water of the generator. The oil itself obviously does not enter the decomposing chamber to any appreciable extent and therefore does not contaminate the final sludge. The whole process accordingly lies to be favourably distinguished from those other methods of employing oil in generators or in the treatment of carbide which are referred to elsewhere in this book.

NON-AUTOMATIC WATER-TO-CARBIDE GENERATORS.--The only principle underlying the satisfactory design of a non-automatic water-to-carbide generator is to ensure the presence of water in excess at the spot where decomposition is taking place. This may be effected by employing what is known as the "flooded-compartment" system of construction, i.e., by subdividing the total carbide charge into numerous compartments arranged either vertically or horizontally, and admitting the water in interrupted quantities, each more than sufficient thoroughly to decompose and saturate the contents of one compartment, rather than in a slow, steady stream. It would be quite easy to manage this without adopting any mechanism of a moving kind, for the water might be stored in a tank kept full by means of a ball-valve, and admitted to an intermediate reservoir in a slow, continuous current, the reservoir being fitted with an inverted syphon, on the "Tantalus-cup" principle, so that it should first fill itself up, and then suddenly empty into the pipe leading to the carbide container. Without this refinement, however, a water-to-carbide generator, with subdivided charge, behaves satisfactorily as long as each separate charge of carbide is so small that the heat evolved on its decomposition can be conducted away from the solid through the water- jacketed walls of the vessel, or as the latent heat of steam, with sufficient rapidity. Still it must be remembered that a water-to-carbide generator, with subdivided charge, does not belong to the flooded- compartment type if the water runs in slowly and continuously: it is then simply a "contact" apparatus, and may or may not exhibit overheating, as well as the inevitable after-generation. All generators of the water-to- carbide type, too, must yield a gas containing some air in the earlier portions of their make, because the carbide containers can only be filled one-third or one-half full of solid. Although the proportion of air so passed into the holder may be, and usually is, far too small in amount to render the gas explosive or dangerous in the least degree, it may well be sufficient to reduce the illuminating power appreciably until it is swept out of the service by the purer gas subsequently generated. Moreover, all water-to-carbide generators are liable, as just mentioned, to produce sufficient overheating to lower the illuminating power of the gas whenever they are wilfully driven too fast, or when they are reputed by their makers to be of a higher productive capacity than they actually should be; and all water-to-carbide generators, excepting those where the carbide is thoroughly soaked in water at some period of their operation, are liable to waste gas by imperfect decomposition.