DEVICES TO SECURE AUTOMATIC ACTION,--The devices which are commonly employed to render a generator automatic in action, that is to say, to control the supply of one of the two substances required in the intermittent evolution of gas, may be divided into two broad classes: (A) those dependent upon the position of a rising-holder bell, and (B) those dependent upon the gas pressure inside the apparatus. As the bell of a rising holder descends in proportion as its gaseous contents are exhausted, it may (A^1) be fitted with some laterally projecting pin which, arrived at a certain position, actuates a series of rods or levers, and either opens a cock on the water-supply pipe or releases a mechanical carbide-feed gear, the said cock being closed again or the feed-gear thrown out of action when the pin, rising with the bell, once more passes a certain position, this time in its upward path. Secondly (A^2), the bell may be made to carry a perforated receptacle containing carbide, which is dipped into the water of the holder tank each time the bell falls, and is lifted out of the water when it rises again. Thirdly (A^3), by fitting inside the upper part of the bell a false interior, conical in shape, the descent of the bell may cause the level of the water in the holder tank to rise until it is above some lateral aperture through which the liquid may escape into a carbide container placed elsewhere. These three methods are represented in the annexed diagram (Fig. 1). In Al the water-levels in the tank and bell remain always at l, being higher in the tank than in the bell by a distance corresponding with the pressure produced by the bell itself. As the bell falls a pin X moves the lever attached to the cock on the water- pipe, and starts, or shuts off, a current passing from a store-tank or reservoir to a decomposing vessel full of carbide. It is also possible to make X work some releasing gear which permits carbide to fall into water--details of this arrangement are given later on. In A^1 the water in the tank serves as a holder seal only, a separate quantity being employed for the purposes of the chemical reaction. This arrangement has the advantage that the holder water lasts indefinitely, except for evaporation in hot weather, and therefore it may be prevented from freezing by dissolving in it some suitable saline body, or by mixing with it some suitable liquid which lowers its point of solidification. It will be observed, too, that in A^1 the pin X, which derives its motive power from the surplus weight of the falling bell, has always precisely the same amount of work to do, viz., to overcome the friction of the plug of the water-cock in its barrel. Hence at all times the pressure obtaining in the service-pipe is uniform, except for a slight jerk momentarily given each time the cock is opened or closed. When X actuates a carbide-feed arrangement, the work it does may or may not vary on different occasions, as will appear hereafter. In A^2 the bell itself carries a perforated basket of carbide, which is submerged in the water when the bell falls, and lifted out again when it rises. As the carbide is thus wetted from below, the lower portion of the mass soon becomes a layer of damp slaked lime, for although the basket is raised completely above the water-level, much liquid adheres to the spent carbide by capillary attraction. Hence, even when the basket is out of the water, acetylene is being produced, and it is produced in circumstances which prevent any control over the temperature attained. The water clinging to the lower part of the basket is vaporised by the hot, half-spent carbide, and the steam attacks the upper part, so that polymerisation of the gas and baking of the carbide are inevitable. In the second place, the pressure in the service-pipe attached to A^2 depends as before upon the net weight of the holder bell; but here that net weight is made up of the weight of the bell itself, that of the basket, and that of the carbide it contains. Since the carbide is being gradually converted into damp slaked lime, it increases in weight to an indeterminate extent as the generator in exhausted; but since, on the other hand, some lime may be washed out of the basket each time it is submerged, and some of the smaller fragments of carbide may fall through the perforations, the basket tends to decrease in weight as the generator is exhausted. Thus it happens in A^2 that the combined weight of bell plus basket plus contents is wholly indefinite, and the pressure in the service becomes so irregular that a separate governor must be added to the installation before the burners can be expected to behave properly. In the third place, the water in the tank serves both for generation and for decomposition, and this involves the employment of some arrangement to keep its level fairly constant lest the bell should become unsealed, while protection from frost by saline or liquid additions is impossible. A^2 is known popularly as a "dipping" generator, and it will be seen to be defective mechanically and bad chemically. In both A^1 and A^2 the bell is constructed of thin sheet- metal, and it is cylindrical in shape; the mass of metal in it is therefore negligible in comparison with the mass of water in the tank, and so the level of the liquid is sensibly the same whether the bell be high or low. In A^3 the interior of the bell is fitted with a circular plate which cuts off its upper corners and leaves a circumferential space S triangular in vertical section. This space is always full of air, or air and water, and has to be deducted from the available storage capacity of the bell. Supposing the bell transparent, and viewing it from above, its effective clear or internal diameter will be observed to be smaller towards the top than near the bottom; or since the space S is closed both against the water and against the gas, the walls of the bell may be said to be thicker near its top. Thus it happens that as the bell descends into the water past the lower angle of S, it begins to require more space for itself in the tank, and so it displaces the water until the levels rise. When high, as shown in the sketch marked A^3(a), the water-level is at l, below the mouth of a pipe P; but when low, as in A^3(b), the water is raised to the point l', which is above P. Water therefore flows into P, whence it reaches the carbide in an attached decomposing chamber. Here also the water in the tank is used for decomposition as well as for sealing purposes, and its normal level must be maintained exactly at l, lest the mouth of P should not be covered whenever the bell falls.

The devices employed to render a generator automatic which depend upon pressure (B) are of three main varieties: (B^1) the water-level in the decomposing chamber may be depressed by the pressure therein until its surface falls below a stationary mass of carbide; (B^2) the level in a water-store tank may be depressed until it falls below the mouth of a pipe leading to the carbide vessel; (B^3) the current of water passing down a pipe to the decomposing chamber may be interrupted by the action of a pressure superior to the force of gravitation. These arrangements are indicated roughly in Fig. 2. In B^1, D is a hollow cylinder closed at all points except at the cock G and the hole E, which are always below the level of the water in the annulus F, the latter being open to the air at its top. D is rigidly fastened to the outer vessel F so that it cannot move vertically, and the carbide cage is rigidly fastened to D. Normally the water-levels are at l, and the liquid has access to the carbide through perforations in the basket. Acetylene is thus produced; but if G is shut, the gas is unable to escape, and so it presses downwards upon the water until the liquid falls in D to the dotted line l", rising in F to the dotted line l'. The carbide is then out of water, and except for after-generation, evolution of gas ceases. On opening G more or less fully, the water more or less quickly reaches its original position at l, and acetylene is again produced. Manifestly this arrangement is identical with that of A^2 as regards the periodical immersion of the carbide holder in the liquid; but it is even worse than the former mechanically because there is no rising holder in B^1, and the pressure in the service is never constant. B^2 represents the water store of an unshown generator which works by pressure. It consists of a vessel divided vertically by means of a partition having a submerged hole N. One-half, H, is cloned against the atmosphere, but communicates with the gas space of the generator through L; the other half, K, is open to the air. M is a pipe leading water to the carbide. When gas is being burnt as fast as, or faster than, it is being evolved, the pressure in the generator is small, the level of the water stands at l, and the mouth of M is below it. When the pressure rises by cessation of consumption, that pressure acts through L upon the water in H, driving it down in H and up in K till it takes the positions l", and l', the mouth of M being then above the surface. It should be observed that in the diagrams B^1 and B^3, the amount of pressure, and the consequent alteration in level, is grossly exaggerated to gain clearness; one inch or less in both cases may be sufficient to start or retard evolution of acetylene. Fig. B^3 is somewhat ideal, but indicates the principle of opposing gas pressure to a supply of water depending upon gravitation; a method often adopted in the construction of portable acetylene apparatus. The arrangement consists of an upper tank containing water open to the air, and a lower vessel holding carbide closed everywhere except at the pipe P, which leads to the burners, and at the pipe S, which introduces water from the store-tank. If the cock at T is closed, pressure begins to rise in the carbide holder until it is sufficient to counterbalance the weight of the column of water in the pipe S, when a further supply is prevented until the pressure sinks again. This idea is simply an application of the displacement-holder principle, and as such is defective (except for vehicular lamps) by reason of lack of uniformity in pressure.

DISPLACEMENT GASHOLDERS.--An excursion may here be made for the purpose of studying the action of a displacement holder, which in its most elementary form is shown at C. It consists of an upright vessel open at the top, and divided horizontally into two equal portions by a partition, through which a pipe descends to the bottom of the lower half. At the top of the closed lower compartment a tube is fixed, by means of which gas can be introduced below the partition. While the cock is open to the air, water is poured in at the open top till the lower compartment is completely full, and the level of the liquid is at l. If now, gas is driven in through the side tube, the water is forced downwards in the lower half, up through the depending pipe till it begins to fill the upper half of the holder, and finally the upper half is full of water and the lower half of gas an shown by the levels l' and l". But the force necessary to introduce gas into such an apparatus, which conversely is equal to the force with which the apparatus strives to expel its gaseous contents, measured in inches of water, is the distance at any moment between the levels l' and l"; and as these are always varying, the effective pressure needed to fill the apparatus, or the effective pressure given by the apparatus, may range from zero to a few inches less than the total height of the whole holder. A displacement holder, accordingly, may be used either to store a varying quantity of gas, or to give a steady pressure just above or just below a certain desired figure; but it will not serve both purposes. If it is employed as a holder, it in useless as a governor or pressure regulator; if it is used as a pressure regulator, it can only hold a certain fixed volume of gas. The rising holder, which is shown at A^1 in Fig. 1 (neglecting the pin X, &c.) serves both purposes simultaneously; whether nearly full or nearly empty, it gives a constant pressure--a pressure solely dependent upon its effective weight, which may be increased by loading its crown or decreased by supporting it on counterpoises to any extent that may be required. As the bell of a rising holder moves, it must be provided with suitable guides to keep its path vertical; these guides being arranged symmetrically around its circumference and carried by the tank walls. A fixed control rod attached to the tank over which a tube fastened to the bell slides telescope-fashion is sometimes adopted; but such an arrangement is in many respects less admirable than the former.

Two other devices intended to give automatic working, which are scarcely capable of classification among their peers, may be diagrammatically shown in Fig. 3. The first of these (D) depends upon the movements of a flexible diaphragm. A vessel (a) of any convenient size and shape is divided into two portions by a thin sheet of metal, leather, caoutchouc, or the like. At its centre the diaphragm is attached by some air-tight joint to the rod c, which, held in position by suitable guides, is free to move longitudinally in sympathy with the diaphragm, and is connected at its lower extremity with a water-supply cock or a carbide-feed gear. The tube e opens at its base into the gas space of the generator, so that the pressure below the diaphragm in a is the same as that elsewhere in the apparatus, while the pressure in a above the diaphragm is that of the atmosphere. Being flexible and but slightly stretched, the diaphragm is normally depressed by the weight of c until it occupies the position b; but if the pressure in the generator (i.e., in e) rises, it lifts the diaphragm to somewhat about the position b'--the extent of movement being, as usual, exaggerated in the sketch. The movement of the diaphragm is accompanied by a movement of the rod c, which can be employed in any desirable way. In E the bell of a rising holder of the ordinary typo is provided with a horizontal striker which, when the bell descends, presses against the top of a bag g made of any flexible material, such as india-rubber, and previously filled with water. Liquid is thus ejected, and may be caused to act upon calcium carbide in some adjacent vessel. The sketch is given because such a method of obtaining an intermittent water-supply has at one time been seriously proposed; but it is clearly one which cannot be recommended.

ACTION OF WATER-TO-CARBIDE GENERATORS.--Having by one or other of the means described obtained a supply of water intermittent in character, it remains to be considered how that supply may be made to approach the carbide in the generator. Actual acetylene apparatus are so various in kind, and merge from one type to another by such small differences, that it is somewhat difficult to classify them in a simple and intelligible fashion. However, it may be said that water-to-carbide generators, i.e., such as employ water as the moving material, may be divided into four categories: (F^1) water is allowed to fall as single drops or as a fine stream upon a mass of carbide--this being the "drip" generator; (F^2) a mass of water is made to rise round and then recede from a stationary vessel containing carbide--this being essentially identical in all respects save the mechanical one with the "dip" or "dipping" generator shown in A^2, Fig. 1; (F^3) a supply of water is permitted to rise round, or to flow upon, a stationary mass of carbide without ever receding from the position it has once assumed--this being the "contact" generator; and (F^4) a supply of water is admitted to a subdivided charge of carbide in such proportion that each quantity admitted is in chemical excess of the carbide it attacks. With the exception of F^2, which has already been illustrated as A^2 Fig. 1, or as B^1 in Fig. 2, these methods of decomposing carbide are represented in Figs. 4 and 5. It will be observed that whereas in both F^1 and F^3 the liberated acetylene passes off at the top of the apparatus, or rather from the top of the non-subdivided charge of carbide, in F^1 the water enters at the top, and in F^3 it enters at the bottom. Thus it happens that the mixture of acetylene and steam, which is produced at the spot where the primary chemical reaction is taking place, has to travel through the entire mass of carbide present in a generator belonging to type F^3, while in F^1 the damp gas flows directly to the exit pipe without having to penetrate the lumps of solid. Both F^1 and F^3 exhibit after-generation caused by a reaction between the liquid water mechanically clinging to the mass of spent lime and the excess of carbide to an approximately equal extent; but for the reason just mentioned, after-generation due to a reaction between the vaporised water accompanying the acetylene first evolved and the excess of carbide is more noticeable in F^3 than in F^1; and it is precisely this latter description of after-generation which leads to overheating of the most ungovernable kind. Naturally both F^1 and F^3 can be fitted with water jackets, as is indicated by the dotted lines in the second sketch; but unless the generating chamber in quite small and the evolution of gas quite slow, the cooling action of the jacket will not prove sufficient. As the water in F^1 and F^3 is not capable of backward motion, the decomposing chambers cannot be employed as displacement holders, as is the case in the dipping generator pictured at B^1, Fig. 2. They must be coupled, accordingly, to a separate holder of the displacement or, preferably, of the rising type; and, in order that the gas evolved by after-generation may not be wasted, the automatic mechanism must cut off the supply of water to the generator by the time that holder is two-thirds or three-quarters full.