Extinctors, or fire-annihilators, have been invented or introduced by several persons. Mr. T. Phillips was responsible for one in 1849, which generated steam and carbonic acid. Two or three persons seem to have had a hand in an apparatus developed by Mr. W. B. Dick about twenty years later, and patented April, 1869. This consisted of an iron cylinder furnished with tartaric acid, bicarbonate of soda and water, and generating the carbonic acid gas. The first inventor of this appliance was a Dr. Carlier, who suggested it, or something like it, a few years previously.
About the same time, Mr. James Sinclair introduced his chemical appliance, the firm now being the Harden Star, Lewis, & Sinclair Company. British fire-brigades would not touch the extinctors; but the Americans seized upon them rapidly, and manufactured them largely. At the present time, it is said that there is scarcely a fire-brigade in the States that does not use a chemical fire-engine in some shape or form.
In Britain, the extinctor, either as the hand-grenade bottle or portable cylinder, which latter contains about eight gallons, is largely used by private persons, and is kept in many large establishments. Several provincial fire-brigades have also adopted the appliances in some form or other; but, as a rule, the chemical fire-engine has not been used by the public fire-brigades of the country. Perhaps one reason is, that it is regarded as more suitable for private use, and not as superior to the powerful steam-engines, hydrants, etc., operated so efficiently by trained firemen.
It will be seen that the claims for chemical fire-engines are twofold in character: first, that they themselves supply propelling power for the fluid without pumps—a great consideration for private persons; and, secondly, that the liquid thrown has far greater fire-quenching powers than water.
To the first of these claims, it is possible that fire-brigades, with their numerous hydrants and powerful steam-engines, would pay but little regard; while as to the second claim, only accomplished chemists and impartially-minded persons of wide and varied experience can form a fully-reliable opinion.
At the time of the great Cripplegate fire in London, November, 1897, Americans were very keen in their criticism, much of which was unjust and inaccurate; but one of their points was the absence of chemical appliances in the London Brigade.
It is, however, fairly open to argument whether the use of such apparatus would have mended matters. Even Americans have by no means abolished the steam fire-engine; and they have sometimes found that the fire has obtained so firm a hold, that the best they could do was to prevent the flames from spreading. When quantities of inflammable substances are crowded in high and comparatively frail buildings in narrow thoroughfares, you have all the elements of serious fires; and when once fairly started, it remains to be proved whether a gas-propelled and gas-laden stream would be more efficient than powerful and copious jets of water.
The difficulty would appear to be rather that of directly and quickly reaching the seat of the fire, than of the more or less fire-quenching properties of rival fluids. From the evidence of Mr. John F. Dane at the Cripplegate Fire Enquiry, we may gain some idea why the brigade dislike the chemical fire-engine. He had been twenty-eight years in the brigade—though he had then left the service, and was a consulting fire engineer—but at one fire, where he had found a dense smoke, an hour was occupied in tracing the fire to its source, it being worked upon by hand-buckets. Had he used a chemical fire-engine, it would, no doubt, have been played into the dense smoke, and damaged a thousand pounds' worth of goods, while, after having exhausted the charge, they would not have found the fire subdued. Chemical fire-engines could not be trusted to discharge where wanted.
Many modern structures at the Cripplegate fire were comparatively frail. Iron girders and stone were, no doubt, largely used, and you would naturally think that iron would be fireproof; but, as a matter of fact, iron may be worse than wood. That is, cast-iron is very liable to split, if suddenly heated or cooled; and a jet of water playing on a hot cast-iron girder would most likely cause it to collapse at once, and bring down everything it supported in a terrible ruin.
The truth is, therefore, that light iron and stone structures are not nearly so fireproof as they might appear. The difficulty of building fireproof structures has not yet been fully solved, though many suggestions to that end have been made. Wood soaked in a strong solution of tungstate or silicate of soda is rendered uninflammable and nearly incombustible. Silicate of soda is, perhaps, the best. It fuses in the heat, and forms a glaze over the wood, preventing the oxygen in the air from reaching it. But intense heat will overcome it. Whichcord's plan of fire-proofing encases metal girders in blocks of fire-clay; other systems make great use of concrete. Walls, of course, should be built of brick or stone; while double iron doors are of great value, as in the case of the warehouses burning at the docks on January 1st, 1866.