On the other hand, in the particular case of Galileo, I have not attempted to defend all the proceedings of the Cardinals of the Index and the Cardinals of the Inquisition. For it must be remembered it was no gentle rebuke with which the Copernican system and the individual Galileo were visited; no such light condemnation as that of placing on the Index of prohibited books all Copernican works as being inopportune, or again, that of a caution to Galileo to be more prudent, was deemed adequate to the emergency—if, indeed, any one even thought of them.

So with the facts of the history before us, I think any sweeping defence of the proceedings in question would be unnecessary from an ecclesiastical point of view, and from a scientific point of view untenable.

Moreover, I must add, as an indispensable premiss to the conclusion just stated, I have also maintained that the censures pronounced by the Cardinals on both occasions were not dogmatic decisions, such as Catholic theologians hold to be infallible; but disciplinary enactments, varying with the changing characters of different ages.

Then again, referring to the scientific questions involved, we may see that Astronomy, considered historically, is divided into three periods—the ancient one before the invention of the telescope, that is, up to the time of Galileo; the intermediate one, when the telescope was in use but the law of universal gravitation as yet unknown—from Galileo until the publication of the “Principia” of Newton; and the modern one, from Newton downwards. During the first period it seemed highly probable to the whole world, with the exception of a few gifted intellects, that this Earth was the centre of the Universe, and that all the heavenly bodies revolved round it; during the second period, when the telescope had shed a light so powerful and so brilliant upon astronomical research that men could not absolutely close their eyes to it even if they wished, the balance of probability passed into the opposite scale, and the more intelligent men of science guessed at the truth, however indistinctly. But some elements of uncertainty remained; and this circumstance, taken in connection with the irrelevant arguments so much in vogue at that time, must in all fairness be allowed as an excuse for the many good men, ecclesiastics and others, who opposed the Copernican doctrine. After the great step made by Newton it was no longer a question of balancing probabilities, for the weights were almost all transferred to one scale, and the probabilities of the truth of the Heliocentric System (to give it for once its accurate name) became overwhelming. The subsequent investigations of Bradley and others have gone further still, and have converted this strong, overpowering probability into something approaching indefinitely near to a moral certainty.

Beyond this we cannot reasonably expect to go; physical certainty is not to be attained when we have to traverse the vast distances of celestial space, and human infirmity must be content to recognise the boundary beyond which it may not pass, the limit imposed on finite minds by the Infinite.

THE END.

CHARLES DICKENS AND EVANS, CRYSTAL PALACE PRESS

FOOTNOTES

[1] Nicetas of Syracuse (whose date I am not able to give) seems to have been aware of the diurnal movement of the earth round its axis.

[2] M. de l’Épinois has, since then, published a still more complete collection of the various documents he had obtained permission to inspect at Rome; but this work is, unfortunately, out of print.