2. Compare the size of the veins on the backs of the hands when they are placed side by side on a table. Then exercise briskly the [pg 064]right hand and arm, clenching and unclenching the fist and flexing the arm at the elbow. Place the hands again side by side and, after waiting a minute, observe the increase in the size of the veins in the hand exercised. How is this accounted for?

To Show the Effect of Gravity on the Circulation.—Hold one hand high above the head, at the same time letting the other hand hang loosely by the side. Observe the difference in the color of the hands and the degree to which the large veins are filled. Repeat the experiment, reversing the position of the hands. What results are observed? In what parts of the body does gravity aid in the return of the blood to the heart? In what parts does it hinder? Where fainting is caused by lack of blood in the brain (the usual cause), is it better to let the patient lie down flat or to force him into a sitting posture?

To study the Circulation in a Frog's Foot (Optional).—A compound microscope is needed in this study and for extended examination it is best to destroy the frog's brain. This is done by inserting some blunt-pointed instrument into the skull cavity from the neck and moving it about. A small frog, on account of the thinness of its webs, gives the best results. It should be attached to a thin board which has an opening in one end over which the web of the foot may be stretched. Threads should extend from two of the toes to pins driven into the board to secure the necessary tension of the web, and the foot and lower leg should be kept moist. Using a two-thirds-inch objective, observe the branching of the small arteries into the capillaries and the union of the capillaries to form the small veins. The appearance is truly wonderful, but allowance must be made for the fact that the motion of the blood is magnified, as well as the different structures, and that it appears to move much faster than it really does. With a still higher power, the movements of the corpuscles through the capillaries may be studied.

Note.—To perform this experiment without destroying the brain, the frog is first carefully wrapped with strips of wet cloth and securely tied to the board. The wrapping, while preventing movements of the frog, must not interfere with the circulation.


[pg 065]

CHAPTER VI - THE LYMPH AND ITS MOVEMENT THROUGH THE BODY

Fig. 27—Diagram showing position of the lymph with reference to the blood and the cells. The central tube is a capillary. The arrows indicate the direction of slight movements in the lymph.

The blood, it will be remembered, moves everywhere through the body in a system of closed tubes. These keep it from coming in contact with any of the cells of the body except those lining the tubes themselves. The capillaries, to be sure, bring the blood very near the cells of the different tissues; still, there is need of a liquid to fill the space between the capillaries and the cells and to transfer materials from one to the other. The lymph occupies this position and does this work. The position of the lymph with reference to the capillaries and the cells is shown in Fig. 27.