Fig. 77—Diagram of routes from food canal to general circulation. See text.

2. Route of All the Nutrients except Fat.—Water and salts and the digested proteids and carbohydrates, in passing into the capillaries, mix there with the blood. But this blood, instead of flowing directly to the heart, is passed through the portal vein to the liver, where it enters a second set of capillaries and is brought very near the liver cells. From the liver it is passed through the hepatic veins into the inferior vena cava, and[pg 176] by these it is emptied into the right auricle. This route then includes the capillaries in the mucous membrane of the stomach and intestines, the branches of the portal vein, the portal vein proper, the liver, and the hepatic veins (Fig. 77). In passing through the liver, a large portion of the food material is temporarily retained for a purpose and in a manner to be described later (page 177).

Absorption Changes.—During digestion the insoluble foods are converted into certain soluble materials, such as peptones, maltose, and glycerine,—the conversion being necessary to their solution. A natural supposition is that these materials enter and become a part of the blood, but examination shows them to be absent from this liquid. (See Composition of the Blood, page 30.) There are present in the blood, however, substances closely related to the peptones, maltose, glycerine, etc.; substances which have in fact been formed from them. During their transfer from the food canal, the dissolved nutrients undergo changes, giving rise to the materials in the blood. Thus are the serum albumin and serum globulin of the blood derived from the peptones and proteoses; the dextrose, from the maltose and other forms of sugar; and the fat droplets, from the glycerine, fatty acid, and soluble soap.

While considerable doubt exists as to the cause of these changes and as to the places also where some of them occur, their purpose is quite apparent. The materials forming the dissolved foods, although adapted to absorption, are not suited to the needs of the body, and if introduced in this form are likely to interfere with its work.[67] They are changed, therefore, into the forms which the body can use.

[pg 177]A Second Purpose of Digestion.—Comparing the digestive changes with those of absorption, it is found that they are of a directly opposite nature; that while digestion is a process of tearing down, or separating,—one which reduces the food to a more finely divided condition—there is in absorption a process of building up. From the comparatively simple compounds formed by digestion, there are formed during absorption the more complex compounds of the blood. The one exception is dextrose, which is a simple sugar; but even this is combined in the liver and the muscles to form the more complex compound known as glycogen. (See Methods of Storage, below.) These facts have suggested a second purpose of digestion—that of reducing foods to forms sufficiently simple to enable the body to construct out of them the more complex materials that it needs. Evidence that digestion serves such a purpose is found in the fact that both proteids and carbohydrates are reduced to a simpler form than is necessary for dissolving them.[68]

The Storage of Nutriment.—For some time after the taking of a meal, food materials are being absorbed more rapidly than they can be used by the cells. Following this is an interval when the body is taking no food, but during which the cells must be supplied with nourishment. It also happens that the total amount of food absorbed during a long interval may be in excess of the needs of the cells during that time; and it is always possible, as in disease, that the quantity absorbed is not equal to that consumed. To provide against emergencies, and to keep up a uniform supply of food to the cells, it is necessary that the body store up nutrients in excess of its needs.

Methods of Storage.—The general plan of storage varies with the different nutrients as follows:

1. The carbohydrates are stored in the form of glycogen. This, as already stated (page 120), is a substance closely resembling starch. It is stored in the cells of both the[pg 178] liver and the muscles, but mainly in the liver (Fig. 78). It is a chief function of the liver to collect the excess of dextrose from the blood passing through it, and to convert it into glycogen, which it then stores within its cells. It does not, however, separate all of the dextrose from the blood, a small amount being left for supplying the immediate needs of the tissues. As this is used, the glycogen in the liver is changed back to dextrose and, dissolving, again finds its way into the blood. In this way, the amount of dextrose in the blood is kept practically constant. The carbohydrates are stored also by converting them into fat.

Fig. 78—Liver cells where is stored the glycogen. C. Capillaries.