XVII. THE LONG CEMENT KILN

IN this remarkable invention, which has brought about a striking innovation in a long-established business, we see another characteristic instance of Edison's incisive reasoning and boldness of conception carried into practical effect in face of universal opinions to the contrary.

For the information of those unacquainted with the process of manufacturing Portland cement, it may be stated that the material consists preliminarily of an intimate mixture of cement rock and limestone, ground to a very fine powder. This powder is technically known in the trade as "chalk," and is fed into rotary kilns and "burned"; that is to say, it is subjected to a high degree of heat obtained by the combustion of pulverized coal, which is injected into the interior of the kiln. This combustion effects a chemical decomposition of the chalk, and causes it to assume a plastic consistency and to collect together in the form of small spherical balls, which are known as "clinker." Kilns are usually arranged with a slight incline, at the upper end of which the chalk is fed in and gradually works its way down to the interior flame of burning fuel at the other end. When it arrives at the lower end, the material has been "burned," and the clinker drops out into a receiving chamber below. The operation is continuous, a constant supply of chalk passing in at one end of the kiln and a continuous dribble of clinker-balls dropping out at the other. After cooling, the clinker is ground into very fine powder, which is the Portland cement of commerce.

It is self-evident that an ideal kiln would be one that produced the maximum quantity of thoroughly clinkered material with a minimum amount of fuel, labor, and investment. When Edison was preparing to go into the cement business, he looked the ground over thoroughly, and, after considerable investigation and experiment, came to the conclusion that prevailing conditions as to kilns were far from ideal.

The standard kilns then in use were about sixty feet in length, with an internal diameter of about five feet. In all rotary kilns for burning cement, the true clinkering operation takes place only within a limited portion of their total length, where the heat is greatest; hence the interior of the kiln may be considered as being divided longitudinally into two parts or zones—namely, the combustion, or clinkering, zone, and the zone of oncoming raw material. In the sixty-foot kiln the length of the combustion zone was about ten feet, extending from a point six or eight feet from the lower, or discharge, end to a point about eighteen feet from that end. Consequently, beyond that point there was a zone of only about forty feet, through which the heated gases passed and came in contact with the oncoming material, which was in movement down toward the clinkering zone. Since the bulk of oncoming material was small, the gases were not called upon to part with much of their heat, and therefore passed on up the stack at very high temperatures, ranging from 1500 degrees to 1800 degrees Fahr. Obviously, this heat was entirely lost.

An additional loss of efficiency arose from the fact that the material moved so rapidly toward the combustion zone that it had not given up all its carbon dioxide on reaching there; and by the giving off of large quantities of that gas within the combustion zone, perfect and economical combustion of coal could not be effected.

The comparatively short length of the sixty-foot kiln not only limited the amount of material that could be fed into it, but the limitation in length of the combustion zone militated against a thorough clinkering of the material, this operation being one in which the elements of time and proper heat are prime considerations. Thus the quantity of good clinker obtainable was unfavorably affected. By reason of these and other limitations and losses, it had been possible, in practice, to obtain only about two hundred and fifty barrels of clinker per day of twenty-four hours; and that with an expenditure for coal proportionately equal to about 29 to 33 per cent. of the quantity of clinker produced, even assuming that all the clinker was of good quality.

Edison realized that the secret of greater commercial efficiency and improvement of quality lay in the ability to handle larger quantities of material within a given time, and to produce a more perfect product without increasing cost or investment in proportion. His reasoning led him to the conclusion that this result could only be obtained through the use of a kiln of comparatively great length, and his investigations and experiments enabled him to decide upon a length of one hundred and fifty feet, but with an increase in diameter of only six inches to a foot over that of the sixty-foot kiln.

The principal considerations that influenced Edison in making this radical innovation may be briefly stated as follows:

First. The ability to maintain in the kiln a load from five to seven times greater than ordinarily employed, thereby tending to a more economical output.