The opinions of scientific men of the period on the subject are well represented by the two following extracts—the first, from a lecture at the Royal United Service Institution, about February, 1879, by Mr. (Sir) W. H. Preece, one of the most eminent electricians in England, who, after discussing the question mathematically, said: "Hence the sub-division of the light is an absolute ignis fatuus." The other extract is from a book written by Paget Higgs, LL.D., D.Sc., published in London in 1879, in which he says: "Much nonsense has been talked in relation to this subject. Some inventors have claimed the power to 'indefinitely divide' the electric current, not knowing or forgetting that such a statement is incompatible with the well-proven law of conservation of energy."
"Some inventors," in the last sentence just quoted, probably—indeed, we think undoubtedly—refers to Edison, whose earlier work in electric lighting (1878) had been announced in this country and abroad, and who had then stated boldly his conviction of the practicability of the subdivision of the electrical current. The above extracts are good illustrations, however, of scientific opinions up to the end of 1879, when Mr. Edison's epoch-making invention rendered them entirely untenable. The eminent scientist, John Tyndall, while not sharing these precise views, at least as late as January 17, 1879, delivered a lecture before the Royal Institution on "The Electric Light," when, after pointing out the development of the art up to Edison's work, and showing the apparent hopelessness of the problem, he said: "Knowing something of the intricacy of the practical problem, I should certainly prefer seeing it in Edison's hands to having it in mine."
The reader may have deemed this sketch of the state of the art to be a considerable digression; but it is certainly due to the subject to present the facts in such a manner as to show that this great invention was neither the result of improving some process or device that was known or existing at the time, nor due to any unforeseen lucky chance, nor the accidental result of other experiments. On the contrary, it was the legitimate outcome of a series of exhaustive experiments founded upon logical and original reasoning in a mind that had the courage and hardihood to set at naught the confirmed opinions of the world, voiced by those generally acknowledged to be the best exponents of the art—experiments carried on amid a storm of jeers and derision, almost as contemptuous as if the search were for the discovery of perpetual motion. In this we see the man foreshadowed by the boy who, when he obtained his books on chemistry or physics, did not accept any statement of fact or experiment therein, but worked out every one of them himself to ascertain whether or not they were true.
Although this brings the reader up to the year 1879, one must turn back two years and accompany Edison in his first attack on the electric-light problem. In 1877 he sold his telephone invention (the carbon transmitter) to the Western Union Telegraph Company, which had previously come into possession also of his quadruplex inventions, as already related. He was still busily engaged on the telephone, on acoustic electrical transmission, sextuplex telegraphs, duplex telegraphs, miscellaneous carbon articles, and other inventions of a minor nature. During the whole of the previous year and until late in the summer of 1877, he had been working with characteristic energy and enthusiasm on the telephone; and, in developing this invention to a successful issue, had preferred the use of carbon and had employed it in numerous forms, especially in the form of carbonized paper.
Eighteen hundred and seventy-seven in Edison's laboratory was a veritable carbon year, for it was carbon in some shape or form for interpolation in electric circuits of various kinds that occupied the thoughts of the whole force from morning to night. It is not surprising, therefore, that in September of that year, when Edison turned his thoughts actively toward electric lighting by incandescence, his early experiments should be in the line of carbon as an illuminant. His originality of method was displayed at the very outset, for one of the first experiments was the bringing to incandescence of a strip of carbon in the open air to ascertain merely how much current was required. This conductor was a strip of carbonized paper about an inch long, one-sixteenth of an inch broad, and six or seven one-thousandths of an inch thick, the ends of which were secured to clamps that formed the poles of a battery. The carbon was lighted up to incandescence, and, of course, oxidized and disintegrated immediately. Within a few days this was followed by experiments with the same kind of carbon, but in vacuo by means of a hand-worked air-pump. This time the carbon strip burned at incandescence for about eight minutes. Various expedients to prevent oxidization were tried, such, for instance, as coating the carbon with powdered glass, which in melting would protect the carbon from the atmosphere, but without successful results.
Edison was inclined to concur in the prevailing opinion as to the easy destructibility of carbon, but, without actually settling the point in his mind, he laid aside temporarily this line of experiment and entered a new field. He had made previously some trials of platinum wire as an incandescent burner for a lamp, but left it for a time in favor of carbon. He now turned to the use of almost infusible metals—such as boron, ruthenium, chromium, etc.—as separators or tiny bridges between two carbon points, the current acting so as to bring these separators to a high degree of incandescence, at which point they would emit a brilliant light. He also placed some of these refractory metals directly in the circuit, bringing them to incandescence, and used silicon in powdered form in glass tubes placed in the electric circuit. His notes include the use of powdered silicon mixed with lime or other very infusible non-conductors or semi-conductors. Edison's conclusions on these substances were that, while in some respects they were within the bounds of possibility for the subdivision of the electric current, they did not reach the ideal that he had in mind for commercial results.
Edison's systematized attacks on the problem were two in number, the first of which we have just related, which began in September, 1877, and continued until about January, 1878. Contemporaneously, he and his force of men were very busily engaged day and night on other important enterprises and inventions. Among the latter, the phonograph may be specially mentioned, as it was invented in the late fall of 1877. From that time until July, 1878, his time and attention day and night were almost completely absorbed by the excitement caused by the invention and exhibition of the machine. In July, feeling entitled to a brief vacation after several years of continuous labor, Edison went with the expedition to Wyoming to observe an eclipse of the sun, and incidentally to test his tasimeter, a delicate instrument devised by him for measuring heat transmitted through immense distances of space. His trip has been already described. He was absent about two months. Coming home rested and refreshed, Mr. Edison says: "After my return from the trip to observe the eclipse of the sun, I went with Professor Barker, Professor of Physics in the University of Pennsylvania, and Doctor Chandler, Professor of Chemistry in Columbia College, to see Mr. Wallace, a large manufacturer of brass in Ansonia, Connecticut. Wallace at this time was experimenting on series arc lighting. Just at that time I wanted to take up something new, and Professor Barker suggested that I go to work and see if I could subdivide the electric light so it could be got in small units like gas. This was not a new suggestion, because I had made a number of experiments on electric lighting a year before this. They had been laid aside for the phonograph. I determined to take up the search again and continue it. On my return home I started my usual course of collecting every kind of data about gas; bought all the transactions of the gas-engineering societies, etc., all the back volumes of gas journals, etc. Having obtained all the data, and investigated gas-jet distribution in New York by actual observations, I made up my mind that the problem of the subdivision of the electric current could be solved and made commercial." About the end of August, 1878, he began his second organized attack on the subdivision of the current, which was steadily maintained until he achieved signal victory a year and two months later.
The date of this interesting visit to Ansonia is fixed by an inscription made by Edison on a glass goblet which he used. The legend in diamond scratches runs: "Thomas A. Edison, September 8, 1878, made under the electric light." Other members of the party left similar memorials, which under the circumstances have come to be greatly prized. A number of experiments were witnessed in arc lighting, and Edison secured a small Wallace-Farmer dynamo for his own work, as well as a set of Wallace arc lamps for lighting the Menlo Park laboratory. Before leaving Ansonia, Edison remarked, significantly: "Wallace, I believe I can beat you making electric lights. I don't think you are working in the right direction." Another date which shows how promptly the work was resumed is October 14, 1878, when Edison filed an application for his first lighting patent: "Improvement in Electric Lights." In after years, discussing the work of Wallace, who was not only a great pioneer electrical manufacturer, but one of the founders of the wire-drawing and brass-working industry, Edison said: "Wallace was one of the earliest pioneers in electrical matters in this country. He has done a great deal of good work, for which others have received the credit; and the work which he did in the early days of electric lighting others have benefited by largely, and he has been crowded to one side and forgotten." Associated in all this work with Wallace at Ansonia was Prof. Moses G. Farmer, famous for the introduction of the fire-alarm system; as the discoverer of the self-exciting principle of the modern dynamo; as a pioneer experimenter in the electric-railway field; as a telegraph engineer, and as a lecturer on mines and explosives to naval classes at Newport. During 1858, Farmer, who, like Edison, was a ceaseless investigator, had made a series of studies upon the production of light by electricity, and had even invented an automatic regulator by which a number of platinum lamps in multiple arc could be kept at uniform voltage for any length of time. In July, 1859, he lit up one of the rooms of his house at Salem, Massachusetts, every evening with such lamps, using in them small pieces of platinum and iridium wire, which were made to incandesce by means of current from primary batteries. Farmer was not one of the party that memorable day in September, but his work was known through his intimate connection with Wallace, and there is no doubt that reference was made to it. Such work had not led very far, the "lamps" were hopelessly short-lived, and everything was obviously experimental; but it was all helpful and suggestive to one whose open mind refused no hint from any quarter.
At the commencement of his new attempts, Edison returned to his experiments with carbon as an incandescent burner for a lamp, and made a very large number of trials, all in vacuo. Not only were the ordinary strip paper carbons tried again, but tissue-paper coated with tar and lampblack was rolled into thin sticks, like knitting-needles, carbonized and raised to incandescence in vacuo. Edison also tried hard carbon, wood carbons, and almost every conceivable variety of paper carbon in like manner. With the best vacuum that he could then get by means of the ordinary air-pump, the carbons would last, at the most, only from ten to fifteen minutes in a state of incandescence. Such results were evidently not of commercial value.
Edison then turned his attention in other directions. In his earliest consideration of the problem of subdividing the electric current, he had decided that the only possible solution lay in the employment of a lamp whose incandescing body should have a high resistance combined with a small radiating surface, and be capable of being used in what is called "multiple arc," so that each unit, or lamp, could be turned on or off without interfering with any other unit or lamp. No other arrangement could possibly be considered as commercially practicable.