The competitive lamps exhibited and tested at this time comprised those of Edison, Maxim, Swan, and Lane-Fox. The demonstration of Edison's success stimulated the faith of his French supporters, and rendered easier the completion of plans for the Societe Edison Continental, of Paris, formed to operate the Edison patents on the Continent of Europe. Mr. Batchelor, with Messrs. Acheson and Hipple, and one or two other assistants, at the close of the Exposition transferred their energies to the construction and equipment of machine-shops and lamp factories at Ivry-sur-Seine for the company, and in a very short time the installation of plants began in various countries—France, Italy, Holland, Belgium, etc.
All through 1881 Johnson was very busy, for his part, in England. The first "Jumbo" Edison dynamo had gone to Paris; the second and third went to London, where they were installed in 1881 by Mr. Johnson and his assistant, Mr. W. J. Hammer, in the three-thousand-light central station on Holborn Viaduct, the plant going into operation on January 12, 1882. Outside of Menlo Park this was the first regular station for incandescent lighting in the world, as the Pearl Street station in New York did not go into operation until September of the same year. This historic plant was hurriedly thrown together on Crown land, and would doubtless have been the nucleus of a great system but for the passage of the English electric lighting act of 1882, which at once throttled the industry by its absurd restrictive provisions, and which, though greatly modified, has left England ever since in a condition of serious inferiority as to development in electric light and power. The streets and bridges of Holborn Viaduct were lighted by lamps turned on and off from the station, as well as the famous City Temple of Dr. Joseph Parker, the first church in the world to be lighted by incandescent lamps—indeed, so far as can be ascertained, the first church to be illuminated by electricity in any form. Mr. W. J. Hammer, who supplies some very interesting notes on the installation, says: "I well remember the astonishment of Doctor Parker and his associates when they noted the difference of temperature as compared with gas. I was informed that the people would not go in the gallery in warm weather, owing to the great heat caused by the many gas jets, whereas on the introduction of the incandescent lamp there was no complaint." The telegraph operating-room of the General Post-Office, at St. Martin's-Le Grand and Newgate Street nearby, was supplied with four hundred lamps through the instrumentality of Mr. (Sir) W. H. Preece, who, having been seriously sceptical as to Mr. Edison's results, became one of his most ardent advocates, and did much to facilitate the introduction of the light. This station supplied its customers by a network of feeders and mains of the standard underground two-wire Edison tubing-conductors in sections of iron pipe—such as was used subsequently in New York, Milan, and other cities. It also had a measuring system for the current, employing the Edison electrolytic meter. Arc lamps were operated from its circuits, and one of the first sets of practicable storage batteries was used experimentally at the station. In connection with these batteries Mr. Hammer tells a characteristic anecdote of Edison: "A careless boy passing through the station whistling a tune and swinging carelessly a hammer in his hand, rapped a carboy of sulphuric acid which happened to be on the floor above a 'Jumbo' dynamo. The blow broke the glass carboy, and the acid ran down upon the field magnets of the dynamo, destroying the windings of one of the twelve magnets. This accident happened while I was taking a vacation in Germany, and a prominent scientific man connected with the company cabled Mr. Edison to know whether the machine would work if the coil was cut out. Mr. Edison sent the laconic reply: 'Why doesn't he try it and see?' Mr. E. H. Johnson was kept busy not only with the cares and responsibilities of this pioneer English plant, but by negotiations as to company formations, hearings before Parliamentary committees, and particularly by distinguished visitors, including all the foremost scientific men in England, and a great many well-known members of the peerage. Edison was fortunate in being represented by a man with so much address, intimate knowledge of the subject, and powers of explanation. As one of the leading English papers said at the time, with equal humor and truth: 'There is but one Edison, and Johnson is his prophet.'"
As the plant continued in operation, various details and ideas of improvement emerged, and Mr. Hammer says: "Up to the time of the construction of this plant it had been customary to place a single-pole switch on one wire and a safety fuse on the other; and the practice of putting fuses on both sides of a lighting circuit was first used here. Some of the first, if not the very first, of the insulated fixtures were used in this plant, and many of the fixtures were equipped with ball insulating joints, enabling the chandeliers—or 'electroliers'—to be turned around, as was common with the gas chandeliers. This particular device was invented by Mr. John B. Verity, whose firm built many of the fixtures for the Edison Company, and constructed the notable electroliers shown at the Crystal Palace Exposition of 1882."
We have made a swift survey of developments from the time when the system of lighting was ready for use, and when the staff scattered to introduce it. It will be readily understood that Edison did not sit with folded hands or drop into complacent satisfaction the moment he had reached the practical stage of commercial exploitation. He was not willing to say "Let us rest and be thankful," as was one of England's great Liberal leaders after a long period of reform. On the contrary, he was never more active than immediately after the work we have summed up at the beginning of this chapter. While he had been pursuing his investigations of the generator in conjunction with the experiments on the incandescent lamp, he gave much thought to the question of distribution of the current over large areas, revolving in his mind various plans for the accomplishment of this purpose, and keeping his mathematicians very busy working on the various schemes that suggested themselves from time to time. The idea of a complete system had been in his mind in broad outline for a long time, but did not crystallize into commercial form until the incandescent lamp was an accomplished fact. Thus in January, 1880, his first patent application for a "System of Electrical Distribution" was signed. It was filed in the Patent Office a few days later, but was not issued as a patent until August 30, 1887. It covered, fundamentally, multiple arc distribution, how broadly will be understood from the following extracts from the New York Electrical Review of September 10, 1887: "It would appear as if the entire field of multiple distribution were now in the hands of the owners of this patent.... The patent is about as broad as a patent can be, being regardless of specific devices, and laying a powerful grasp on the fundamental idea of multiple distribution from a number of generators throughout a metallic circuit."
Mr. Edison made a number of other applications for patents on electrical distribution during the year 1880. Among these was the one covering the celebrated "Feeder" invention, which has been of very great commercial importance in the art, its object being to obviate the "drop" in pressure, rendering lights dim in those portions of an electric-light system that were remote from the central station. [10]
[Footnote 10: For further explanation of "Feeder" patent,
see Appendix.]
From these two patents alone, which were absolutely basic and fundamental in effect, and both of which were, and still are, put into actual use wherever central-station lighting is practiced, the reader will see that Mr. Edison's patient and thorough study, aided by his keen foresight and unerring judgment, had enabled him to grasp in advance with a master hand the chief and underlying principles of a true system—that system which has since been put into practical use all over the world, and whose elements do not need the touch or change of more modern scientific knowledge.
These patents were not by any means all that he applied for in the year 1880, which it will be remembered was the year in which he was perfecting the incandescent electric lamp and methods, to put into the market for competition with gas. It was an extraordinarily busy year for Mr. Edison and his whole force, which from time to time was increased in number. Improvement upon improvement was the order of the day. That which was considered good to-day was superseded by something better and more serviceable to-morrow. Device after device, relating to some part of the entire system, was designed, built, and tried, only to be rejected ruthlessly as being unsuitable; but the pursuit was not abandoned. It was renewed over and over again in innumerable ways until success had been attained.
During the year 1880 Edison had made application for sixty patents, of which thirty-two were in relation to incandescent lamps; seven covered inventions relating to distributing systems (including the two above particularized); five had reference to inventions of parts, such as motors, sockets, etc.; six covered inventions relating to dynamo-electric machines; three related to electric railways, and seven to miscellaneous apparatus, such as telegraph relays, magnetic ore separators, magneto signalling apparatus, etc.
The list of Mr. Edison's patents (see Appendices) is not only a monument to his life's work, but serves to show what subjects he has worked on from year to year since 1868. The reader will see from an examination of this list that the years 1880, 1881, 1882, and 1883 were the most prolific periods of invention. It is worth while to scrutinize this list closely to appreciate the wide range of his activities. Not that his patents cover his entire range of work by any means, for his note-books reveal a great number of major and minor inventions for which he has not seen fit to take out patents. Moreover, at the period now described Edison was the victim of a dishonest patent solicitor, who deprived him of a number of patents in the following manner: