This pressure was applied in a most ingenious manner. On the ends of the shafts of the bottom and top rolls there were cylindrical sleeves, or bearings, having seven sheaves, in which was run a half-inch endless wire rope. This rope was wound seven times over the sheaves as above, and led upward and over a single-groove sheave which was operated by the piston of an air cylinder, and in this manner the pressure was applied to the rolls. It will be seen, therefore, that the system consisted in a single rope passed over sheaves and so arranged that it could be varied in length, thus providing for elasticity in exerting pressure and regulating it as desired. The efficiency of this system was incomparably greater than that of any other known crusher or grinder, for while a pressure of one hundred and twenty-five thousand pounds could be exerted by these rolls, friction was almost entirely eliminated because the upper and lower roll bearings turned with the rolls and revolved in the wire rope, which constituted the bearing proper.
The same cautious foresight exercised by Edison in providing a safety device—the fuse—to prevent fires in his electric-light system, was again displayed in this concentrating plant, where, to save possible injury to its expensive operating parts, he devised an analogous factor, providing all the crushing machinery with closely calculated "safety pins," which, on being overloaded, would shear off and thus stop the machine at once.
The rocks having thus been reduced to fine powder, the mass was ready for screening on its way to the magnetic separators. Here again Edison reversed prior practice by discarding rotary screens and devising a form of tower screen, which, besides having a very large working capacity by gravity, eliminated all power except that required to elevate the material. The screening process allowed the finest part of the crushed rock to pass on, by conveyor belts, to the magnetic separators, while the coarser particles were in like manner automatically returned to the rolls for further reduction.
In a narrative not intended to be strictly technical, it would probably tire the reader to follow this material in detail through the numerous steps attending the magnetic separation. These may be seen in a diagram reproduced from the above-named article in the Iron Age, and supplemented by the following extract from the Electrical Engineer, New York, October 28, 1897: "At the start the weakest magnet at the top frees the purest particles, and the second takes care of others; but the third catches those to which rock adheres, and will extract particles of which only one-eighth is iron. This batch of material goes back for another crushing, so that everything is subjected to an equality of refining. We are now in sight of the real 'concentrates,' which are conveyed to dryer No. 2 for drying again, and are then delivered to the fifty-mesh screens. Whatever is fine enough goes through to the eight-inch magnets, and the remainder goes back for recrushing. Below the eight-inch magnets the dust is blown out of the particles mechanically, and they then go to the four-inch magnets for final cleansing and separation.... Obviously, at each step the percentage of felspar and phosphorus is less and less until in the final concentrates the percentage of iron oxide is 91 to 93 per cent. As intimated at the outset, the tailings will be 75 per cent. of the rock taken from the veins of ore, so that every four tons of crude, raw, low-grade ore will have yielded roughly one ton of high-grade concentrate and three tons of sand, the latter also having its value in various ways."
This sand was transported automatically by belt conveyors to the rear of the works to be stored and sold. Being sharp, crystalline, and even in quality, it was a valuable by-product, finding a ready sale for building purposes, railway sand-boxes, and various industrial uses. The concentrate, in fine powdery form, was delivered in similar manner to a stock-house.
As to the next step in the process, we may now quote again from the article in the Iron Age: "While Mr. Edison and his associates were working on the problem of cheap concentration of iron ore, an added difficulty faced them in the preparation of the concentrates for the market. Furnacemen object to more than a very small proportion of fine ore in their mixtures, particularly when the ore is magnetic, not easily reduced. The problem to be solved was to market an agglomerated material so as to avoid the drawbacks of fine ore. The agglomerated product must be porous so as to afford access of the furnace-reducing gases to the ore. It must be hard enough to bear transportation, and to carry the furnace burden without crumbling to pieces. It must be waterproof, to a certain extent, because considerations connected with securing low rates of freight make it necessary to be able to ship the concentrates to market in open coal cars, exposed to snow and rain. In many respects the attainment of these somewhat conflicting ends was the most perplexing of the problems which confronted Mr. Edison. The agglomeration of the concentrates having been decided upon, two other considerations, not mentioned above, were of primary importance—first, to find a suitable cheap binding material; and, second, its nature must be such that very little would be necessary per ton of concentrates. These severe requirements were staggering, but Mr. Edison's courage did not falter. Although it seemed a well-nigh hopeless task, he entered upon the investigation with his usual optimism and vim. After many months of unremitting toil and research, and the trial of thousands of experiments, the goal was reached in the completion of a successful formula for agglomerating the fine ore and pressing it into briquettes by special machinery."
This was the final process requisite for the making of a completed commercial product. Its practice, of course, necessitated the addition of an entirely new department of the works, which was carried into effect by the construction and installation of the novel mixing and briquetting machinery, together with extensions of the conveyors, with which the plant had already been liberally provided.
Briefly described, the process consisted in mixing the concentrates with the special binding material in machines of an entirely new type, and in passing the resultant pasty mass into the briquetting machines, where it was pressed into cylindrical cakes three inches in diameter and one and a half inches thick, under successive pressures of 7800, 14,000, and 60,000 pounds. Each machine made these briquettes at the rate of sixty per minute, and dropped them into bucket conveyors by which they were carried into drying furnaces, through which they made five loops, and were then delivered to cross-conveyors which carried them into the stock-house. At the end of this process the briquettes were so hard that they would not break or crumble in loading on the cars or in transportation by rail, while they were so porous as to be capable of absorbing 26 per cent. of their own volume in alcohol, but repelling water absolutely—perfect "old soaks."
Thus, with never-failing persistence and patience, coupled with intense thought and hard work, Edison met and conquered, one by one, the complex difficulties that confronted him. He succeeded in what he had set out to do, and it is now to be noted that the product he had striven so sedulously to obtain was a highly commercial one, for not only did the briquettes of concentrated ore fulfil the purpose of their creation, but in use actually tended to increase the working capacity of the furnace, as the following test, quoted from the Iron Age, October 28, 1897, will attest: "The only trial of any magnitude of the briquettes in the blast-furnace was carried through early this year at the Crane Iron Works, Catasauqua, Pennsylvania, by Leonard Peckitt.
"The furnace at which the test was made produces from one hundred to one hundred and ten tons per day when running on the ordinary mixture. The charging of briquettes was begun with a percentage of 25 per cent., and was carried up to 100 per cent. The following is the record of the results: