The ultimate source of gold is from the lighter colored igneous rocks, like granites, syenites, and diorites, throughout which it is diffused in quantities too small to be either visible or worth while to extract. It becomes available only when it has been dissolved out by percolating waters and segregated in fissures or veins, either in or leading from these igneous rocks. Generally this transfer of gold has taken place when the rocks were at high temperatures, and by the aid of water (and perhaps other solvents) which was also at high temperatures. The presence of gold in sandstones, limestones, etc., is secondary, as is also its presence in sea water, in which there is reported to be nearly a grain (about five cents worth) in every ton of water. Beside the direct recovery of gold from gold mining, a great deal is obtained from its association with iron, copper, silver, lead and zinc sulphides, in which it is included in particles too fine to be visible, but in quantities large enough to be separated from the other metals after they are smelted.

In the United States gold is found in the Cordilleran region from California to Alaska, in Colorado, Nevada, Arizona, Utah, the Black Hills of South Dakota, and in small quantities in the metamorphosed slates of North and South Carolina, Georgia, and in Nova Scotia.

The Silver Group

Though much commoner than gold, silver did not attract the eye of man as early, probably because it tarnishes when exposed to air or any other agent having sulphur compounds in it, and a black film of silver sulphide covers the surface. Its first use was for ornaments, and some of these found in the ruins of ancient Troy indicate its use as early as 2500 B.C. A thousand years later it was being used to make basins, vases and other vessels.

Silver is next to gold in malleability and ductility, so that a grain of silver can be drawn out into a wire 400 feet long, or beaten into leaves ¹/₁₀₀₀₀₀ of an inch in thickness. As a conductor of electricity it is unsurpassed, being rated at 100% while copper rates 93%. Silver is also like gold in the freedom with which it alloys with other metals, such as gold, copper, iron, platinum, etc. All our silver coins, tableware, etc., have some copper alloyed with the silver to give it greater hardness and durability.

Unlike gold, silver freely enters into compounds with the non-metals, which is the reason that it is not found primarily in its native state, but usually as a sulphide. Its ultimate source is in the igneous rocks, few granites or lavas, on analysis, failing to show at least traces of silver. Before it is available as an ore, or mineral, it has been dissolved from the original magma, and segregated in fissures or veins, along with such minerals, as quartz, fluorite, calcite, etc. This seems to have taken place while the igneous rocks were still hot, and by the agency of vapors and liquids which were also hot. The presence of silver in sedimentary and metamorphic rocks, or even in sea water, is secondary.

The primary deposition of silver is usually in the form of sulphides, the commoner of which are, argentite or silver sulphide, pyrargyrite or silver and antimony sulphide, and prousite, or silver and arsenic sulphide. Its occurrence as native silver, or the chloride, cerargyrite, is secondary and due to the reactions which have taken place when sulphide deposits have been subjected to weathering agents.

The United States produces about 25% of the world’s supply, Mexico some 35%. It is especially found along the Cordilleran ranges of both North and South America.

[Silver]
Ag
[Pl. 6]

Usually non-crystalline, but occasionally showing cube or octahedron faces of the isometric system; hardness 2.5; specific gravity 10.5; color silvery white; luster metallic; opaque.