Sometimes pyrargyrite occurs in crystals and these belong to the hexagonal system, and are prisms with low faces on the ends, as on [plate 7], and the mineral is peculiar in that the faces on the opposite ends are unlike.

Pyrargyrite is found mostly in fissures and veins of quartz, fluorite, calcite, etc., and associated with pyrite, chalcopyrite, galena, etc. It is fairly common in Colorado in Gunnison and Ouray counties, in Nevada, New Mexico, Arizona, etc.

[Prousite]
Ag₃ AsS₃
[Pl. 7]
light red
silver

Usually occurs in irregular masses; hardness 2.5; specific gravity 5.6; color scarlet to vermilion; streak the same; luster adamantine; transparent on thin edges.

In general this mineral is very like pyrargyrite, but has the scarlet color and streak which are entirely characteristic. It is likely to have the surface tarnished black, which happens on exposure to light, so that it is essential to be sure that fresh surfaces are being examined. Occasionally it is found in crystals, of the same type as the preceding mineral. It is generally found associated with pyrargyrite.

[Cerargyrite]
AgCl
horn silver

Usually found in irregular masses or incrustations; hardness 1 to 1½; specific gravity 5.5; color pearly gray, grayish green to colorless, but turning violet brown on exposure to light; luster resinous; transparent on thin edges.

This mineral is usually found in thin seams or waxy incrustations, but it may occur in crystals in which case they are cubes. It is very soft and easily cut with a knife, which with its tendency to turn violet-brown on exposure to light, makes it easy to identify. Cerargyrite is a secondary mineral, resulting from the action of chlorine-bearing water on some one of the sulphides of silver. It is found in the upper portions of mines, especially those in arid regions.

The Copper Group

After gold the next metal to be utilized was copper. About 4000 B.C. our early forefathers found that by heating certain rocks, they obtained a metal which could be pounded, ground and carved into useful shapes. Curiously enough the rocks which had the copper also had some tin in them, so that this first-found copper was not pure, but had from five to ten per cent of tin in it, making the resulting metal harder, and what we call bronze. It was some thousands of years later before they distinguished the copper as a pure metal, but it worked and made good tools. The newly found metal was not as ornamental as gold; but, because it could be made into tools, it had a tremendous influence on man’s development. As the bronze tools began to take the place of the stone implements, the “Age of Bronze” was ushered in. In America the Indians in the Lake Superior region found native copper weathered out of the rocks and later mined it, and they too pounded it into knives, axes, needles, and ornaments, but probably never learned to melt it and mold their tools. At any rate they were not as far advanced in using this metal when Columbus landed as were the southern Europeans 6500 years earlier. Since the use of iron became general, copper has not held such a dominant place, but it still is “the red metal” which holds the second most important place.