Plagioclase feldspar with any one of the pyroxenes, most commonly augite, is gabbro. There is a wide range in the relative proportions of the two minerals making gabbro. At one extreme are rocks made entirely, or almost entirely, of plagioclase feldspar, which are known as anorthosites, and occur in parts of the higher mountains of the Adirondacks like Mt. Marcy, in several places in eastern Canada, etc. Then there are the typical gabbros where the feldspar and augite are more or less equally represented. At the other extreme come those gabbros in which the pyroxene predominates, in the most marked cases the feldspar being entirely lacking, and the rock being termed a pyroxenite. When the pyroxene of a gabbro is either enstatite or hyposthene (usually the latter) the gabbro is often called norite. Magnetite, biotite, and hornblende may occur in small quantities as accessory minerals.

Gabbro is a common intrusive rock, occurring in stocks, batholiths, and dikes, and often varies considerably in different parts of the mass. Like granite the mass solidified far below the surface, under some mountain fold, and has only been exposed as the result of weathering away the layers of overlying rock. Gabbros appear much like diorites, but are distinguished by the fact that the dark mineral is one of the pyroxenes, instead of an amphibole or a mica. They are widely distributed, being found in the White Mountains, near Peekskill, N. Y., Baltimore, Md., about Lake Superior, in Wyoming, the Rocky Mts., etc.

[Peridotite]

A rock made up of olivine and augite (or any of the pyroxenes) is peridotite. As it contains no feldspar, and both augite and olivine are dark-green to black in color, these rocks are always dark green to black in color and of considerable weight. They are usually rather coarsely crystalline. Peridotite is usually associated with gabbro, making dikes which lead from the main gabbro mass. Less frequently it occurs independently, making up an intrusive mass. Hornblende and mica may be present in small quantities, as accessory minerals.

In general these are rather rare rocks, making dikes connected with stocks or batholiths of gabbro. Peridotite is found near Baltimore, Md., in Custer Co., Colo., in Kentucky, etc.

[Pyroxenite]

This represents the extreme among coarsely crystalline igneous rocks, a whole mass made up of one mineral, and that some one of the pyroxene group. If the mineral can be exactly determined, the rock may be still more definitely named. For instance if it is all augite, then the rock would be called augitite. Like the preceding rocks, pyroxenite is an intrusive rock, usually found in dikes, which are connected with gabbro, and it represents the segregation of one mineral out of the gabbro, and its solidification at one point. Hornblende, magnetite and pyrrhotite may be present as accessory minerals. This is not a common rock, but it illustrates the fact that all possible combinations do occur, if the circumstances have warranted it. It is found near Baltimore, Md., Webster, N. C., and in Montana.

[Rhyolite]

This is a combination of orthoclase feldspar, quartz, and either hornblende, mica or augite in which the crystals are of such small size that they can not be identified with the naked eye. In composition it corresponds to granite, but it is much finer in texture. It differs from trachite by having quartz while the latter has none. This can usually be determined by trying the hardness as none of the other minerals are as hard as 7. It is much harder to distinguish it from dacite which differs only in having plagioclase feldspar in place of the orthoclase, and only the microscope will enable one to make this distinction. Where the distinction cannot be made these light-colored lavas are often called felsite.

Rhyolite is usually an extrusive lava, occurring in sheets, but sometimes it is intrusive, occurring in sills, dikes, and laccoliths. In all these cases the lava has solidified so rapidly, that the crystals are tiny, and only the general effect of a crystalline structure is distinguishable. Rhyolites may occur with porphyritic structure, in which case the presence of the larger feldspar crystals will help to distinguish whether they are orthoclase or not, making the determination easier. The color of rhyolites is green, red or gray, always a decided light shade.