It is well known that in Egypt, from the deficiency of wood, the excrement of animals is dried, and forms the principal fuel, and that the nitrogen from the soot of this excrement was, for many centuries, imported into Europe in the form of sal ammoniac, until a method of manufacturing this substance was discovered at the end of the last century by Gravenhorst of Brunswick. The fields in the delta of the Nile are supplied with no other animal manures than the ashes of the burnt excrements, and yet they have been proverbially fertile from a period earlier than the first dawn of history, and that fertility continues to the present day as admirable as it was in the earliest times. These fields receive, every year, from the inundation of the Nile, a new soil, in its mud deposited over their surface, rich in those mineral elements which have been withdrawn by the crops of the previous harvest. The mud of the Nile contains as little nitrogen as the mud derived from the Alps of Switzerland, which fertilises our fields after the inundations of the Rhine. If this fertilising mud owed this property to nitrogenised matters; what enormous beds of animal and vegetable exuviae and remains ought to exist in the mountains of Africa, in heights extending beyond the limits of perpetual snow, where no bird, no animal finds food, from the absence of all vegetation!
Abundant evidence in support of the important truth we are discussing, may be derived from other well known facts. Thus, the trade of Holland in cheese may be adduced in proof and illustration thereof. We know that cheese is derived from the plants which serve as food for cows. The meadow-lands of Holland derive the nitrogen of cheese from the same source as with us; i.e. the atmosphere. The milch cows of Holland remain day and night on the grazing-grounds, and therefore, in their fluid and solid excrements return directly to the soil all the salts and earthy elements of their food: a very insignificant quantity only is exported in the cheese. The fertility of these meadows can, therefore, be as little impaired as our own fields, to which we restore all the elements of the soil, as manure, which have been withdrawn in the crops. The only difference is, in Holland they remain on the field, whilst we collect them at home and carry them, from time to time, to the fields.
The nitrogen of the fluid and solid excrements of cows, is derived from the meadow-plants, which receive it from the atmosphere; the nitrogen of the cheese also must be drawn from the same source. The meadows of Holland have, in the lapse of centuries, produced millions of hundredweights of cheese. Thousands of hundredweights are annually exported, and yet the productiveness of the meadows is in no way diminished, although they never receive more nitrogen than they originally contained.
Nothing then can be more certain than the fact, that an exportation of nitrogenised products does not exhaust the fertility of a country; inasmuch as it is not the soil, but the atmosphere, which furnishes its vegetation with nitrogen. It follows, consequently, that we cannot increase the fertility of our fields by a supply of nitrogenised manure, or by salts of ammonia, but rather that their produce increases or diminishes, in a direct ratio, with the supply of mineral elements capable of assimilation. The formation of the constituent elements of blood, that is, of the nitrogenised principles in our cultivated plants, depends upon the presence of inorganic matters in the soil, without which no nitrogen can be assimilated even when there is a most abundant supply. The ammonia contained in animal excrements exercises a favourable effect, inasmuch as it is accompanied by the other substances necessary to accomplish its transition into the elements of the blood. If we supply ammonia associated with all the conditions necessary to its assimilation, it ministers to the nourishment of the plants; but if this artificial supply is not given they can derive all the needed nitrogen from the atmosphere—a source, every loss from which is restored by the decomposition of the bodies of dead animals and the decay of plants. Ammonia certainly favours, and accelerates, the growth of plants in all soils, wherein all the conditions of its assimilation are united; but it is altogether without effect, as respects the production of the elements of blood where any of these conditions are wanting. We can suppose that asparagin, the active constituent of asparagus, the mucilaginous root of the marsh-mallow, the nitrogenised and sulphurous ingredients of mustard-seed, and of all cruciferous plants, may originate without the aid of the mineral elements of the soil. But if the principles of those vegetables, which serve as food, could be generated without the co-operation of the mineral elements of blood, without potash, soda, phosphate of soda, phosphate of lime, they would be useless to us and to herbivorous animals as food; they would not fulfil the purpose for which the wisdom of the Creator has destined them. In the absence of alkalies and the phosphates, no blood, no milk, no muscular fibre can be formed. Without phosphate of lime our horses, sheep and cattle, would be without bones.
In the urine and in the solid excrements of animals we carry ammonia, and, consequently, nitrogen, to our cultivated plants, and this nitrogen is accompanied by all the mineral elements of food exactly in the same proportions, in which both are contained in the plants which served as food to the animals, or what is the same, in those proportions in which both can serve as nourishment to a new generation of plants, to which both are essential.
The effect of an artificial supply of ammonia, as a source of nitrogen, is, therefore, precisely analogous to that of humus as a source of carbonic acid—it is limited to a gain of time; that is, it accelerates the development of plants. This is of great importance, and should always be taken into account in gardening, especially in the treatment of the kitchen-garden; and as much as possible, in agriculture on a large scale, where the time occupied in the growth of the plants cultivated is of importance.
When we have exactly ascertained the quantity of ashes left after the combustion of cultivated plants which have grown upon all varieties of soil, and have obtained correct analyses of these ashes, we shall learn with certainty which of the constituent elements of the plants are constant and which are changeable, and we shall arrive at an exact knowledge of the sum of all the ingredients we withdraw from the soil in the different crops.
With this knowledge the farmer will be able to keep an exact record, of the produce of his fields in harvest, like the account-book of a well regulated manufactory; and then by a simple calculation he can determine precisely the substances he must supply to each field, and the quantity of these, in order to restore their fertility. He will be able to express, in pounds weight, how much of this or that element he must give in order to augment its fertility for any given kind of plants.
These researches and experiments are the great desideratum of the present time. TO THE UNITED EFFORTS OF THE CHEMISTS OF ALL COUNTRIES WE MAY CONFIDENTLY LOOK FOR A SOLUTION OF THESE GREAT QUESTIONS, and by the aid of ENLIGHTENED AGRICULTURISTS we shall arrive at a RATIONAL system of GARDENING, HORTICULTURE, and AGRICULTURE, applicable to every country and all kinds of soil, and which will be based upon the immutable foundation of OBSERVED FACTS and PHILOSOPHICAL INDUCTION.