In endeavoring to picture the condition of things in ζ Cancri we might imagine our sun to have a companion sun, a half or a third as large as itself, and situated within what may be called planetary distance, circling with it around their center of gravity; while a third sun, smaller than the second and several times as far away, and accompanied by a black or non-luminous orb, swings with the first two around another center of motion. There you would have an entertaining complication for the inhabitants of a system of planets!
Other objects in Cancer are: Σ 1223, double star, magnitudes six and six and a half, distance 5", p. 214°; Σ 1291, double, magnitudes both six, distance 1.3", p. 328°—four-inch should split it; ι, double, magnitudes four and a half and six and a half, distance 30", p. 308°; 66, double magnitudes six and nine, distance 4.8", p. 136°; Σ 1311, double, magnitudes both about the seventh, distance 7", p. 200°; 1712, star cluster, very beautiful with the five-inch glass.
The constellation of Auriga may next command our attention ([map No. 5]). The calm beauty of its leading star Capella awakens an admiration that is not diminished by the rivalry of Orion's brilliants glittering to the south of it. Although Capella must be an enormously greater sun than ours, its spectrum bears so much resemblance to the solar spectrum that a further likeness of condition is suggested. No close telescopic companion to Capella has been discovered. A ninth-magnitude companion, distant 159", p. 146°, and two others, one of twelfth magnitude at 78", p. 317°, the other of thirteenth magnitude at 126", p. 183°, may be distant satellites of the great star, but not planets in the ordinary sense, since it is evident that they are self-luminous. It is a significant fact that most of the first-magnitude stars have faint companions which are not so distant as altogether to preclude the idea of physical relationship.
But while Capella has no visible companion, Campbell, of the Lick Observatory, has lately discovered that it is a conspicuous example of a peculiar class of binary stars only detected within the closing decade of the nineteenth century. The nature of these stars, called spectroscopic binaries, may perhaps best be described while we turn our attention from Capella to the second star in Auriga β (Menkalina), which not only belongs to the same class, but was the first to be discovered. Neither our telescopes, nor any telescope in existence, can directly reveal the duplicity of β Aurigæ to the eye—i. e., we can not see the two stars composing it, because they are so close that their light remains inextricably mingled after the highest practicable magnifying power has been applied in the effort to separate them. But the spectroscope shows that the star is double and that its components are in rapid revolution around one another, completing their orbital swing in the astonishingly short period of four days! The combined mass of the two stars is estimated to be two and a half times the mass of the sun, and the distance between them, from center to center, is about eight million miles.
The manner in which the spectroscope revealed the existence of two stars in β Aurigæ is a beautiful illustration of the unexpected and, so to speak, automatic application of an old principle in the discovery of new facts not looked for. It was noticed at the Harvard Observatory that the lines in the photographed spectrum of β Aurigæ (and of a few other stars to be mentioned later) appeared single in some of the photographs and double in others. Investigation proved that the lines were doubled at regular intervals of about two days, and that they appeared single in the interim. The explanation was not far to seek. It is known that all stars which are approaching us have their spectral lines shifted, by virtue of their motion of approach, toward the violet end of the spectrum, and that, for a similar reason, all stars which are receding have their lines shifted toward the red end of the spectrum. Now, suppose two stars to be revolving around one another in a plane horizontal, or nearly so, to the line of sight. When they are at their greatest angular distance apart as seen from the earth one of them will evidently be approaching at the same moment that the other is receding. The spectral lines of the first will therefore be shifted toward the violet, and those of the second will be shifted toward the red. Then if the stars, when at their greatest distance apart, are still so close that the telescope can not separate them, their light will be combined in the spectrum; but the spectral lines, being simultaneously shifted in opposite directions, will necessarily appear to be doubled. As the revolution of the stars continues, however, it is clear that their motion will soon cease to be performed in the line of sight, and will become more and more athwart that line, and as this occurs the spectral lines will gradually assume their normal position and appear single. This is the sequence of phenomena in β Aurigæ. And the same sequence is found in Capella and in several other more or less conspicuous stars in various parts of the heavens.
Such facts, like those connecting rows and groups of stars with masses and spiral lines of nebula are obscure signboards, indicating the opening of a way which, starting in an unexpected direction, leads deep into the mysteries of the universe.
Southward from β we find the star θ, which is a beautiful quadruple. We shall do best with our five-inch here, although in a fine condition of the atmosphere the four-inch might suffice. The primary is of the third magnitude; the first companion is of magnitude seven and a half, distance 2", p. 5°; the second, of the tenth magnitude, distance 45", p. 292°; and the third, of the tenth magnitude, distance 125", p. 350°.
We should look at the double Σ 616 with one of our larger apertures in order to determine for ourselves what the colors of the components are. There is considerable diversity of opinion on this point. Some say the larger star is pale red and the smaller light blue; others consider the color of the larger star to be greenish, and some have even called it white. The magnitudes are five and nine, distance 6", p. 350°.