Auriga contains several noteworthy clusters which will be found on the [map]. The most beautiful of these is 1295, in which about five hundred stars have been counted.

The position of the new star of 1892, known as Nova Aurigæ, is also indicated on the [map]. While this never made a brilliant appearance, it gave rise to a greater variety of speculative theories than any previous phenomenon of the kind. Although not recognized until January 24, 1892, this star, as photographic records prove, was in existence on December 9, 1891. At its brightest it barely exceeded magnitude four and a half, and its maximum occurred within ten days after its first recognition. When discovered it was of the fifth magnitude. It was last seen in its original form with the Lick telescope on April 26th, when it had sunk to the lowest limit of visibility. To everybody's astonishment it reappeared in the following August, and on the 17th of that month was seen shining with the light of a tenth-magnitude star, but presenting the spectrum of a nebula! Its visual appearance in the great telescope was now also that of a planetary nebula. Its spectrum during the first period of its visibility had been carefully studied, so that the means existed for making a spectroscopic comparison of the phenomenon in its two phases. During the first period, when only a stellar spectrum was noticed, remarkable shiftings of the spectral lines occurred, indicating that two and perhaps three bodies were concerned in the production of the light of the new star, one of which was approaching the earth, while the other or the others receded with velocities of several hundred miles per second! On the revival in the form of a planetary nebula, while the character of the spectrum had entirely changed, evidences of rapid motion in the line of sight remained.

But what was the meaning of all this? Evidently a catastrophe of some kind had occurred out there in space. The idea of a collision involving the transformation of the energy of motion into that of light and heat suggests itself at once. But what were the circumstances of the collision? Did an extinguished sun, flying blindly through space, plunge into a vast cloud of meteoric particles, and, under the lashing impact of so many myriads of missiles, break into superficial incandescence, while the cosmical wrack through which it had driven remained glowing with nebulous luminosity? Such an explanation has been offered by Seeliger. Or was Vogel right when he suggested that Nova Aurigæ could be accounted for by supposing that a wandering dark body had run into collision with a system of planets surrounding a decrepit sun (and therefore it is to be hoped uninhabited), and that those planets had been reduced to vapor and sent spinning by the encounter, the second outburst of light being caused by an outlying planet of the system falling a prey to the vagabond destroyer? Or some may prefer the explanation, based on a theory of Wilsing's, that two great bodies, partially or wholly opaque and non-luminous at their surfaces, but liquid hot within, approached one another so closely that the tremendous strain of their tidal attraction burst their shells asunder so that their bowels of fire gushed briefly visible, amid a blaze of spouting vapors. And yet Lockyer thinks that there was no solid or semisolid mass concerned in the phenomenon at all, but that what occurred was simply the clash of two immense swarms of meteors that had crossed one another's track.

Well, where nobody positively knows, everybody has free choice. In the meantime, look at the spot in the sky where that little star made its appearance and underwent its marvelous transformation, for, even if you can see no remains of it there, you will feel your interest in the problem it has presented, and in the whole subject of astronomy, greatly heightened and vivified, as the visitor to the field of Waterloo becomes a lover of history on the spot.

The remaining objects of special interest in Auriga may be briefly mentioned: 26, triple star, magnitudes five, eight, and eleven, distances 12", p. 268°, and 26", p. 113°; 14, triple star, magnitudes five, seven and a half, and eleven, distances 14", p. 224°, and 12.6", p. 342°, the last difficult for moderate apertures; λ, double, magnitudes five and nine, distance 121", p. 13°; ε, variable, generally of third magnitude, but has been seen of only four and a half magnitude; 41, double, magnitudes five and six, distance 8", p. 354°; 996, 1067, 1119, and 1166, clusters all well worth inspection, 1119 being especially beautiful.

The inconspicuous Lynx furnishes some fine telescopic objects, all grouped near the northwestern corner of the constellation. Without a six-inch telescope it would be a waste of time to attack the double star 4, whose components are of sixth and eighth magnitudes, distance 0.8", p. 103°; but its neighbor, 5, a fine triple, is within our reach, the magnitudes being six, ten, and eight, distances 30", p. 139°, and 96", p. 272°. In 12 Lyncis we find one of the most attractive of triple stars, which in good seeing weather is not beyond the powers of a three-inch glass, although we shall have a far more satisfactory view of it with the four-inch. The components are of the sixth, seventh, and eighth magnitudes, distances 1.4", p. 117°, and 8.7", p. 304°. A magnifying power which just suffices clearly to separate the disks of the two nearer stars makes this a fine sight. A beautiful contrast of colors belongs to the double star 14, but unfortunately the star is at present very close, the distance between its sixth and seventh magnitude components not exceeding 0.8", position angle 64°. Σ 958 is a pretty double, both stars being of the sixth magnitude, distance 5", p. 257°. Still finer is Σ 1009, a double, whose stars are both a little above the seventh magnitude and nearly equal, distance 3", p. 156°. A low power suffices to show the three stars in 19, their magnitudes being six and a half, seven and a half, and eight, distances 15", p. 312°, and 215", p. 358°. Webb describes the two smaller stars as plum-colored. Plum-colored suns!

At the opposite end of the constellation are two fine doubles, Σ 1333, magnitudes six and a half and seven, distance 1.4", p. 39°; and 38, magnitudes four and seven, distance 2.9", p. 235°.

Under the guidance of [map No. 6] we turn to Leo, which contains one of the leading gems among the double stars, γ, whose components, of the second and fourth magnitudes, are respectively yellow and green, the green star, according to some observers, having a peculiar tinge of red. Their distance apart is 3.7", p. 118°, and they are undoubtedly in revolution about a common center, the probable period being about four hundred years. The three-inch glass should separate them easily when the air is steady, and a pleasing sight they are.

The star ι is a closer double, and also very pretty, magnitudes four and eight, colors lemon and light blue, distance 2.17", p. 53°. Other doubles are τ, magnitudes five and seven, distance 95", p. 170°; 88, magnitudes seven and nine, distance 15", p. 320°; 90, triple, magnitudes six, seven and a half, and ten, distance, 3.5", p. 209°, and 59", p. 234°; 54, magnitudes four and a half and seven, distance 6.2", p. 102°; and 49, magnitudes six and nine, distance 2.4", p. 158°.

Leo contains a remarkable variable star, R, deep red in color, and varying in a space of a hundred and forty-four days from the fifth to the tenth magnitude. It has also several nebulæ, of which only one needs special mention, No. 1861. This is spindle-shaped, and large telescopes show that it consists of three nebulæ. The observer with ordinary instruments finds little to see and little to interest him in these small, faint nebulæ.