Water consists of oxygen and hydrogen, carbonic acid of carbon and oxygen, and ammonia of hydrogen and nitrogen. Water and ammonia are present in the air; so are oxygen and nitrogen. Water falls in the form of rain, dew, etc. So in the atmosphere around us we find nearly every necessary for plant-life; and in the ground, which supplies some metallic oxides for their use, we find the remainder. From the air, then, the plant derives its life.
Fig. 325—Drawing the oxygen from air by combustion.
The vegetable kingdom in turn gives all animals their food. This you will see at a glance is true. Certainly animals live on animals. Man and wilder animals live on the beasts of the field in a measure, but those beasts derive their nourishment from vegetables—the vegetable kingdom. So we live on the vegetable kingdom, and it separates the carbonic acid from the air, and absorbs it. What we do not want it takes. What we want it gives. Vegetables give out oxygen, and we consume it gladly. We throw away carbonic acid, and the plants take it greedily; and thus the atmosphere is retained pure for our use. We can, if desirable, prove that plants absorb carbonic acid and give out oxygen by placing leaves of a plant in water, holding the acid in solution, and let the sun shine upon them. Before long we shall find that the carbonic acid has disappeared, and that oxygen has come into the water.
Carbonic acid is sufficiently heavy to be poured from one vessel to another; and if we have obtained some in a glass, we can extinguish a taper by pouring the invisible gas on to the lighted taper, when it will be immediately extinguished.
From the foregoing observations it will be perceived how very desirable it is that ventilation should be attended to. People close up windows and doors and fireplaces, and go to bed and sleep. In the morning they complain of headache and lassitude; they wonder what is the matter, and why the children are not well. Simply because they have been rebreathing the carbonic acid. Go into a closed railway carriage which is nearly filled (and it is astonishing to us how people can be so foolish as to close every outlet), and you will recoil in disgust. These travellers shut the ventilators and windows “because of the cold.” A very small aperture will ventilate a railway carriage; but a close carriage is sickening and enervating, as these kind of travellers find out by the time they reach their journey’s end. Air was given us to breathe at night as well as by day; and though from man’s acts or omissions there may be circumstances in which “night” air may affect the health, we maintain that air is no more injurious naturally than “day” air. Colder it may be, but any air at night is “night” air, in or out of doors at night; and we are certain that night air in itself never hurt any healthy person. It is not nature’s plan to destroy, but to save. If a person delicate in constitution gets hot, and comes out into a colder atmosphere, and defy nature in that way, he (or she) must take the consequences. But air and ventilation (not draught) are necessaries of health, and to say they injure is to accuse nature falsely. There are many impurities in the air in cities, and in country places sometimes, but such impurities are owing to man’s acts and omissions. With average sanitary arrangements and appliances in a neighbourhood no one need be afraid to breathe fresh air night or day; and while many invalids have, we believe, been retarded in recovery from being kept in a close room, hundreds will be benefited by plenty of fresh air. We should not so insist upon these plain and simple truths were there not so many individuals who think it beneficial to close up every avenue by which air can enter, and who then feel ill and out of spirits, blaming everything but their own short-sightedness for the effect of their own acts. An inch or two of a window may be open at night in a room, as the chimney register should be always fully up in bedrooms. When there are fires the draught supplies fresh air to the room with sufficient rapidity. But many seaside journeys might be avoided if fresh air were insisted on at home.
There is another and an important constituent of the atmosphere called Ozone, which is very superior oxygen, or oxygen in what is termed the “Allotropic” state, and is distantly related to electricity, inasmuch as it can be produced by an electrical discharge. This partly accounts for the freshness in the air after a thunderstorm, for we are all conscious that the storm has “cleared the air.” The fresh, crisp ozone in the atmosphere is evident. Ozone differs from oxygen in possessing taste and smell, and it is heavier by one-half than the oxygen gas. There is a good deal of ozone in the sea breeze, and we can, though not infallibly, detect its presence by test-paper prepared with iodide of potassium, which, when ozone is present, will turn blue. We have still something to learn about ozone, which may be considered as “condensed oxygen.”
Fig. 326. Development of gas by combustion. Fig. 327.