The force of heated air ascending can also be ascertained by cutting up a card into a spiral, and holding it above the flame of a lamp (fig. 39). The spiral, if lightly poised, will turn round rapidly.
Now let us turn to a few experiments with the air, which is composed in two gases, Oxygen and Nitrogen, of which we shall hear more when we come to Chemistry.
Fig. 39.—Movement of heated air.
Fig. 40.—Pressure of the air.
It is not intended here to prosecute researches, but rather to sketch a programme for instruction, based on amusing experiments in Physics, performed without apparatus. The greater part of these experiments are probably well known, and we desire to say that we merely claim to have collected and arranged them for our descriptions. We must also add that we have performed and verified these experiments; the reader, therefore, can attempt them with every certainty of success. We will suppose that we are addressing a young auditory, and commence our course of Physics with some facts relating to the pressure of air. A wine glass, a plate, and water, will serve for our first experiments. Pour some water on the plate, light a piece of paper resting on a cork, and cover the flame with the glass which I turn upside down (fig. 40). What follows?—The water rises in the glass. Why?—Because the burning of the paper having absorbed a part of the oxygen, and the volume of confined gas being diminished, the pressure of the outer air has driven back the fluid. I next fill a goblet with water up to the brim, and cover it with a sheet of paper which touches both the edge of the glass and the surface of the water. I turn the glass upside down, and the sheet of paper prevents the water running out, because it is held in place by atmospheric pressure (fig. 41). It sometimes happens that this experiment does not succeed till after a few attempts on the part of the operator; thus it is prudent to turn the glass over a basin, so that, in case of failure, the water is not spilt. Having obtained a vase and a bottle, both quite full of water, take the bottle, holding it round the neck so that the thumb can be used as a stopper, then turn it upside down, and pass the neck into the water in the vase. Remove your thumb, or stopper, keeping the bottle in a vertical position, and you will see that the water it contains does not escape, but remains in suspension. It is atmospheric pressure which produces this phenomenon. If, instead of water, we put milk in the bottle, or some other fluid denser than water, we shall see that the milk also remains suspended in the bottle, only there is a movement of the fluid in the neck of the bottle, and on careful examination we perceive very plainly that the milk descends to the bottom of the vase, and the water rises into the bottle. Here, again, it is atmospheric pressure which maintains the fluid in the bottle, but the milk descends, because fluids are superposed according to their order of density, and the densest liquid falls to the bottom.
This can be verified by means of the phial of the four elements, which is a plain, long, and narrow bottle, containing equal volumes of metallic mercury, salt water, alcohol, and oil. These four liquids will lie one on the top of the other without ever mixing, even if shaken.
Another experiment as to the pressure of the air may be made (fig. 42). Take a penny and press it against some oaken bookcase or press, rub the coin against the wood for a few seconds, then press it, and withdraw the fingers. The coin will continue to adhere to the wood. The reason of this is, because by the rubbing and the pressure you have dispersed the film of air which was between the penny and the wood, and under those conditions the pressure of the atmospheric air was sufficient to keep the penny in its place.