Fig. 41.—Pressure of the air.
Or, again, let us now add a water-bottle and a hard-boiled egg to our appliances; we will make use of the air-pump, and easily perform another experiment. I light a piece of paper, and let it burn, plunging it into a water-bottle full of air. When the paper has been burning a few seconds I close the opening of the water-bottle by means of a hard-boiled egg, which I have previously divested of its shell, so that it forms a hermetic stopper. The burning of the paper has now caused a vacuum of air in the bottle, and the egg is gradually thrust in by the atmospheric pressure outside. Fig. 43 exhibits it slowly lengthening and stretching out as it passes through the aperture; then it is suddenly thrust completely into the bottle with a little explosive sound, like that produced by striking a paper bag expanded with air. This is atmospheric pressure demonstrated in the clearest manner, and at little cost.
Fig. 42.—Coin adhering by pressure of air.
If it is desired to pursue a little further the experiments relating to atmospheric pressure, it will be easy enough to add to the before-mentioned appliances a closed glass-tube and some mercury, and one will then have the necessary elements for performing Torricelli’s and Pascal’s experiments, and explaining the theory of the barometer (page 52).
An amusing toy, well-known to schoolboys, called the “sucker,” may also be made the object of many dissertations on the vacuum and the pressure of air. It is composed of a round piece of soft leather, to the centre of which is attached a small cord. This leather is placed on the ground and pressed under foot, and when the cord is pulled it forms a cupping-glass, and is only separated with difficulty from the pavement.
Atmospheric air, in common with other gases, has a tendency to fill any space into which it may enter. The mutual attraction of particles of air is nil; on the contrary, they appear to have a tendency to fly away from each other; this property is called “repulsion.” Air also possesses an expansive property—a tendency to press against all the sides of any vessel in which it may be enclosed. Of course the larger the vessel containing a given quantity of air, the less actual pressure it will exert on the sides of the vessel. The elasticity of air therefore decreases with increasing expansion, but it gains in elasticity or force when compressed.
There is a law in Physics which expresses the relation between expansion and elasticity of gases, which may be said to be as follows:—
The elasticity (of a gas) is in inverse ratio to the space it occupies, and therefore by compressing air into a small space we can obtain a great force, as in the air-gun and the pop-gun of our youthful days.