[31] A figure of this, with an explanation, as recommended by Mr. John Hill, Wells, in Norfolk, may be seen in the Gentleman’s Magazine, Vol. LXVI. 2d part, page 897. In this particular, as well as in the deviation from the parallel position of the glasses to the surfaces of the objects, I think the construction not so simple and perfect, as that by rack-work and pinion applied by Mr. Jones. Probably, Dr. Prince had not, at the time of his contriving the joint-work to the box, seen or heard of the other method. His subsequent contrivances shew real ingenuity; and to the inquisitive in this instrument, will afford much useful entertainment and advantage.

To secure the image formed upon the rough glass more completely from the light, at times essentially necessary, there is a pyramidical mahogany box, of the same size, to pack, when not used, in the body of the microscope; when in use, the broad end of this screen box is to be slid into the groove, from which the exterior cover at the end has been taken. This method is peculiarly useful in the day-time; as, by screening the large lenses from the light, it may even then be used with satisfaction.

One of the large lenses may occasionally be placed on the outer edge of the screen box, the other lens being taken out; the view on the rough glass is by these means magnified, and appears to greater advantage. But, besides the grey glass used in the former construction, there is a second in this, placed farther within the body, about half way; and, when the large lens is in the screen box, objects appear better in this than in the former way. It has a still greater effect upon those who are unacquainted with the nature of lenses, as it makes them judge the distance and magnitude much greater than they really are, and is therefore more pleasing than the grey glass in front. Only one grey glass can be used at a time; both being removed when opake objects are viewed.

The stage, F, Fig. 5, is considerably different from that at C, Fig. 3; it is judged more convenient and commodious than the other, and serves, with a small alteration, for both transparent and opake objects. A truncated cone can also be here applied for cutting off superfluous rays of light occasionally.

The method of illuminating the objects is also different. The mode now adopted answers better for opake and transparent objects, throws a stronger light, and is more convenient in application. It consists of two lenses, 1 and 2, Fig. 5; the larger one is to be placed at the end of the bar next the lamp. The smaller one to be adjusted so as to give a strong light. A third is also added, to be used occasionally with opake objects; it is to be applied close to the large lens. Experience will shew when it is to be used, or not. By moving the bar, G, on which these lenses are placed round the stage pillar, M, you bring it so much fronting the stage as effectually to enlighten opake objects by means of the lamp. The light thus afforded is received directly, and none lost by reflection. The objects are fixed on circular wheels of wood, see Fig. 7, the brass centers of which, are fitted to the hole, b, of the stage, Fig. 5; and about this center they are to be turned by the hand for the changing of the objects.

As some objects, such as sections of wood, are seen to advantage both as transparent and opake, a frame containing a plane and a concave mirror is added to this instrument, serving two purposes: by bringing the bar to the front of the stage, removing the large lens, and putting the mirror in its place, the object may be viewed either way, without moving from the seat, by turning the instrument a little round. This experience will discover. The light of the sun may be thrown by the plane mirror on the condensing lens, so as to produce a strong full field of light on the grey glass. This has a grand effect when the large lens is at the end of the screen box, and could not be applied in this manner in former constructions. It becomes also an opake solar microscope, by turning the bar round to enlighten opake objects.

By bringing the concave mirror to a focus that will burn objects, a set of very curious and entertaining experiments may be made and exhibited on the grey glass. The object for combustion should be put in the nippers, and a piece of slate tied as a ground on the stage. The ebullition of a piece of alum viewed in this manner is very beautiful; the bubbles, as they rise and pass off rapidly, appear tinged with all the colours of the rainbow.

There are large-sized magnifiers for the purpose of throwing transparent objects on a screen, in imitation of the solar microscope. By removing the large lenses in front and the grey glass, and placing the black tin cylinder represented in the drawing by dotted marks, over the lamp, they may be shewn in that manner to several persons; thus, this instrument in a great degree supersedes the use of a lanthorn. The image may be contracted occasionally by one of the large lenses.

The following improvement consists in the manner of applying the lamp, by Mr. Hill. By attaching it to the instrument, it renders the light more permanent and steady, and reduces considerably the bulk as well as the trouble of this appendage, and is to be preferred when the lamp is not wanted separately for other uses or experiments.

H, a brass support to the arm, G, for sustaining the weight of the lamp; it turns round with the bar on the pillar, M. At about I is a brass cap soldered to the above support, and which slips over the slider carrying the larger lens, 2. At K, is a strong joint connected with the said cap, and by which an horizontal motion of the cap is given, when an oblique light is required. To the end of this the lamp is fixed, and in such a manner as to admit of its being easily slid upwards or downwards in a perpendicular direction, to procure the just height of the flame. L is a square brass rod to be occasionally screwed into the reservoir of the lamp, for supporting the tin cylinder screen, when transparent objects are to be represented on a screen in a darkened room.