The preceding pictures are from photographs, and with them the student may compare [Fig. 79], which is constructed from drawings made at the spectroscope by the German astronomer Zoellner. The changes here shown are most marked in the prominence at the left, which is shaped like a broken tree trunk, and which appears to be vibrating from one side to the other like a reed shaken in the wind. Such a prominence is frequently called an eruptive one, a name suggested by its appearance of having been blown out from the sun by something like an explosion, while the prominence at the right in this series of drawings, which appears much less agitated, is called by contrast with the other a quiescent prominence. These quiescent prominences are, as a rule, much longer-lived than the eruptive ones. One more picture of prominences ([Fig. 80]) is introduced to show the continuous stretch of chromosphere out of which they spring.

Prominences are seen only at the edge of the sun, because it is there alone that the necessary background can be obtained, but they must occur at the center of the sun and elsewhere quite as well as at the edge, and it is probable that quiescent prominences are distributed over all parts of the sun's surface, but eruptive prominences show a strong tendency toward the regions of sun spots and faculæ as if all three were intimately related phenomena.

126. The sun as a machine.—Thus far we have considered the anatomy of the sun, dissecting it into its several parts, and our next step should be a consideration of its physiology, the relation of the parts to each other, and their function in carrying on the work of the solar organism, but this step, unfortunately, must be a lame one. The science of astronomy to-day possesses no comprehensive and well-established theory of this kind, but looks to the future for the solution of this the greatest pending problem of solar physics. Progress has been made toward its solution, and among the steps of this progress that we shall have to consider, the first and most important is the conception of the sun as a kind of heat engine.

In a steam engine coal is burned under the boiler, and its chemical energy, transformed into heat, is taken up by the water and delivered, through steam as a medium, to the engine, which again transforms and gives it out as mechanical work in the turning of shafts, the driving of machinery, etc. Now, the function of the sun is exactly opposite to that of the engine and boiler: it gives out, instead of receiving, radiant energy; but, like the engine, it must be fed from some source; it can not be run upon nothing at all any more than the engine can run day after day without fresh supplies of fuel under its boiler. We know that for some thousands of years the sun has been furnishing light and heat to the earth in practically unvarying amount, and not to the earth alone, but it has been pouring forth these forms of energy in every direction, without apparent regard to either use or economy. Of all the radiant energy given off by the sun, only two parts out of every thousand million fall upon any planet of the solar system, and of this small fraction the earth takes about one tenth for the maintenance of its varied forms of life and action. Astronomers and physicists have sought on every hand for an explanation of the means by which this tremendous output of energy is maintained century after century without sensible diminution, and have come with almost one mind to the conclusion that the gravitative forces which reside in the sun's own mass furnish the only adequate explanation for it, although they may be in some small measure re-enforced by minor influences, such as the fall of meteoric dust and stones into the sun.

Every boy who has inflated a bicycle tire with a hand pump knows that the pump grows warm during the operation, on account of the compression of the air within the cylinder. A part of the muscular force (energy) expended in working the pump reappears in the heat which warms both air and pump, and a similar process is forever going on in the sun, only in place of muscular force we must there substitute the tremendous attraction of gravitation, 28 times as great as upon the earth. "The matter in the interior of the sun must be as a shuttlecock between the stupendous pressure and the enormously high temperature," the one tending to compress and the other to expand it, but with this important difference between them: the temperature steadily tends to fall as the heat energy is wasted away, while the gravitative force suffers no corresponding diminution, and in the long run must gain the upper hand, causing the sun to shrink and become more dense. It is this progressive shrinking and compression of its molecules into a smaller space which supplies the energy contained in the sun's output of light and heat. According to Lord Kelvin, each centimeter of shrinkage in the sun's diameter furnishes the energy required to keep up its radiation for something more than an hour, and, on account of the sun's great distance, the shrinkage might go on at this rate for many centuries without producing any measurable effect in the sun's appearance.

127. Gaseous constitution of the sun.—But Helmholtz's dynamical theory of the maintenance of the sun's heat, which we are here considering, includes one essential feature that is not sufficiently stated above. In order that the explanation may hold true, it is necessary that the sun should be in the main a gaseous body, composed from center to circumference of gases instead of solid or liquid parts. Pumping air warms the bicycle pump in a way that pumping water or oil will not.