The high temperature of the sun itself furnishes sufficient reason for supposing the solar material to be in the gaseous state, but the gas composing those parts of the sun below the photosphere must be very different in some of its characteristics from the air or other gases with which we are familiar at the earth, since its average density is 1,000 times as great as that of air, and its consistence and mechanical behavior must be more like that of honey or tar than that of any gas with which we are familiar. It is worth noting, however, that if a hole were dug into the crust of the earth to a depth of 15 or 20 miles the air at the bottom of the hole would be compressed by that above it to a density comparable with that of the solar gases.

128. The sun's circulation.—It is plain that under the conditions which exist in the sun the outer portions, which can radiate their heat freely into space, must be cooler than the inner central parts, and this difference of temperature must set up currents of hot matter drifting upward and outward from within the sun and counter currents of cooler matter settling down to take its place. So, too, there must be some level at which the free radiation into outer space chills the hot matter sufficiently to condense its less refractory gases into clouds made up of liquid drops, just as on a cloudy day there is a level in our own atmosphere at which the vapor of water condenses into liquid drops which form the thin shell of clouds that hovers above the earth's surface, while above and below is the gaseous atmosphere. In the case of the sun this cloud layer is always present and is that part which we have learned to call the photosphere. Above the photosphere lies the chromosphere, composed of gases less easily liquefied, hydrogen is the chief one, while between photosphere and chromosphere is a thin layer of metallic vapors, perhaps indistinguishable from the top crust of the photosphere itself, which by absorbing the light given off from the liquid photosphere produces the greater part of the Fraunhofer lines in the solar spectrum.

From time to time the hot matter struggling up from below breaks through the photosphere and, carrying with it a certain amount of the metallic vapors, is launched into the upper and cooler regions of the sun, where, parting with its heat, it falls back again upon the photosphere and is absorbed into it. It is altogether probable that the corona is chiefly composed of fine particles ejected from the sun with velocities sufficient to carry them to a height of millions of miles, or even sufficient to carry them off never to return. The matter of the corona must certainly be in a state of the most lively agitation, its particles being alternately hurled up from the photosphere and falling back again like fireworks, the particles which make up the corona of to-day being quite a different set from those of yesterday or last week. It seems beyond question that the prominences and faculæ too are produced in some way by this up-and-down circulation of the sun's matter, and that any mechanical explanation of the sun must be worked out along these lines; but the problem is an exceedingly difficult one, and must include and explain many other features of the sun's activity of which only a few can be considered here.

129. The sun-spot period.—Sun spots come and go, and at best any particular spot is but short-lived, rarely lasting more than a month or two, and more often its duration is a matter of only a few days. They are not equally numerous at all times, but, like swarms of locusts, they seem to come and abound for a season and then almost to disappear, as if the forces which produced them were of a periodic character alternately active and quiet. The effect of this periodic activity since 1870 is shown in [Fig. 81], where the horizontal line is a scale of times, and the distance of the curve above this line for any year shows the relative number of spots which appeared upon the sun in that year. This indicates very plainly that 1870, 1883, and 1893 were years of great sun-spot activity, while 1879 and 1889 were years in which few spots appeared. The older records, covering a period of two centuries, show the same fluctuations in the frequency of sun spots and from these records curves (which may be found in Young's, The Sun) have been plotted, showing a succession of waves extending back for many years.

Fig. 81.—The curve of sun-spot frequency.

The sun-spot period is the interval of time from the crest or hollow of one wave to the corresponding part of the next one, and on the average this appears to be a little more than eleven years, but is subject to considerable variation. In accordance with this period there is drawn in broken lines at the right of [Fig. 81] a predicted continuation of the sun-spot curve for the first decade of the twentieth century. The irregularity shown by the three preceding waves is such that we must not expect the actual course of future sun spots to correspond very closely to the prediction here made; but in a general way 1901 and 1911 will probably be years of few sun spots, while they will be numerous in 1905, but whether more or less numerous than at preceding epochs of greatest frequency can not be foretold with any approach to certainty so long as we remain in our present ignorance of the causes which make the sun-spot period.

Determine from [Fig. 81] as accurately as possible the length of the sun-spot period. It is hard to tell the exact position of a crest or hollow of the curve. Would it do to draw a horizontal line midway between top and bottom of the curve and determine the length of the period from its intersections with the curve—e. g., in 1874 and 1885?