Fig. 64.
Bubbles of oxygen gas given off from
elodea in presence of sunlight. (Oels.)

122. In a short time we note that in the first vessel small bubbles of gas are accumulating on the surface of the threads of the spirogyra, and now and then some free themselves and rise to the surface of the water. Where there is quite a tangle of the threads the gas is apt to become caught and held back in larger bubbles, which on agitation of the vessel are freed.

If we now examine the second vessel we see that there are no bubbles, or only a very few of them. We are led to believe then that sunlight has had something to do with the setting free of this gas from the plant.

123. We may now take another alga-like vaucheria and perform the experiment in the same way, or to save time the two may be set up at once. In fact if we take any of the green algæ and treat them as described above gas will be given off in a similar manner.

124. We may now take one of the higher green plants, an aquatic plant like elodea, callitriche, etc. Place the plant in the water with the cut end of the stem uppermost, but still immersed, the plant being weighted down by a glass rod or other suitable object. If we place the vessel of water containing these leafy stems in the bright sunlight, in a short time bubbles of gas will pass off quite rapidly from the cut end of the stem. If in the same vessel we place another stem, from which the leaves have been cut, the number of bubbles of gas given off will be very few. This indicates that a large part of the gas is furnished by the leaves.

125. Another vessel fitted up in the same way should be placed in the dark or shaded by covering with a box or black cloth. It will be seen here, as in the case of spirogyra, that very few or no bubbles of gas will be set free. Sunlight here also is necessary for the rapid escape of the gas.

126. We may easily compare the rapidity with which light of varying intensity effects the setting free of this gas. After cutting the end of the stem let us plunge the cut surface several times in melted paraffine, or spread over the cut surface a coat of varnish. Then prick with a needle a small hole through the paraffine or varnish. Immerse the plant in water and place in sunlight as before. The gas now comes from the puncture through the coating of the cut end, and the number of bubbles given off during a given period can be ascertained by counting. If we duplicate this experiment by placing one plant in weak light or diffused sunlight, and another in the shade, we can easily compare the rapidity of the escape of the gas under the different conditions, which represent varying intensities of light. We see then that not only is sunlight necessary for the setting free of this gas, but that in diffused light or in the shade the activity of the plant in this respect is less than in direct sunlight.

127. What this gas is.—If we take quite a quantity of the plants of elodea and place them under an inverted funnel which is immersed in water, the gas will be given off in quite large quantities and will rise into the narrow exit of the funnel. The funnel should be one with a short tube, or the vessel one which is quite deep so that a small test tube which is filled with water may in this condition be inverted over the opening of the funnel tube. With this arrangement of the experiment the gas will rise in the inverted test tube, slowly displace a portion of the water, and become collected in a sufficient quantity to afford us a test. When a considerable quantity has accumulated in the test tube, we may close the end of the tube in the water with the thumb, lift it from the water and invert. The gas will rise against the thumb. A dry soft-pine splinter should be then lighted, and after it has burned a short time, extinguish the flame by blowing upon it, when the still burning end of the splinter should be brought to the mouth of the tube as the thumb is quickly moved to one side. The glowing of the splinter shows that the gas is oxygen.