Fig. 65.
Apparatus for collecting quantity
of oxygen from elodea.
(Detmer.)

Fig. 66.
Ready to see what the gas is.

128. It is better to allow the apparatus to stand several days in the sunlight in order to catch a full tube of the gas. Or on a sunny day carbon dioxide gas can be led into the water in the jar from a generator, such an one as is used for the evolution of CO₂. The CO₂ can be produced by the action of hydrochloric acid on bits of marble. The CO₂ should not be run below the funnel. The test tube should be fastened so that the light oxygen gas will not raise it off the funnel. With the tube full of gas the test for oxygen can be made by lifting the tube with one hand and quickly thrusting the glowing end of the splinter in with the other hand. If properly handled, the splinter will flame again. If it is necessary to keep the apparatus standing for more than one day it is well to add fresh water in the place of most of the water in the jar. Do not use leaves of land plants in this experiment, since the bubbles which rise when these leaves are placed in water are not evidence that this process is taking place.

Fig. 67.
The splinter lights again in the presence of oxygen gas.

129. Oxygen given off by green land plants also.—If we should extend our experiments to land plants we should find that oxygen is given off by them under these conditions of light. Land plants, however, will not do this when they are immersed in water, but it is necessary to set up rather complicated apparatus and to make analyses of the gases at the beginning and at the close of the experiments. This has been done, however, in a sufficiently large number of cases so that we know that all green plants in the sunlight, if temperature and other conditions are favorable, give off oxygen.

130. Absorption of carbon dioxide.—We have next to inquire where the oxygen comes from which is given off by green plants when exposed to the sunlight, and also to learn something more of the conditions necessary for the process. We know that water which has been for some time exposed to the air and soil, and has been agitated, like running water of streams, or the water of springs, has mixed with it a considerable quantity of oxygen and carbon dioxide.

If we boil spring water or hydrant water which comes from a stream containing oxygen and carbon dioxide, for about 20 minutes, these gases are driven off. We should set this aside where it will not be agitated, until it has cooled sufficiently to receive plants without injury. Let us now place some spirogyra or vaucheria, and elodea, or other green water plant, in this boiled water and set the vessel in the bright sunlight under the same conditions which were employed in the experiments for the evolution of oxygen. No oxygen is given off.

Can it be that this is because the oxygen was driven from the water in boiling? We shall see. Let us take the vessel containing the water, or some other boiled water, and agitate it so that the air will be thoroughly mixed with it. In this way oxygen is again mixed with the water. Now place the plant again in the water, set in the sunlight, and in several minutes observe the result. No oxygen or but little is given off. There must be then some other requisite for the evolution of the oxygen.