The ingredients are well mixed and thoroughly dried. Waste glass from a previous batch is also added. The mixture is heated to about 1200° C. in large pots made of Stourbridge clay, and the heating is continued for as much as sixteen hours, and until the whole of the material in the pot is molten and fairly mobile. Scum or glass-gall is removed, and when gas bubbles have disappeared, the temperature is allowed to fall to 700°-800°, when the glass becomes sufficiently viscous for subsequent working. The semi-fluid mass is then blown, moulded, or drawn, according to the kind of article that is required.
The physical properties of glass will now be considered in order that we may be able to account for its extended use. Such an inquiry as this, especially in the case of materials in common use, is often interesting, because it frequently happens that the special property upon which we set so much value is an abnormal one and, consequently, the feature which we take for granted is precisely the one into which we should inquire most closely.
The most striking feature of glass is its transparency. This property is abnormal, if glass is a solid. Consider what happens in most cases. A substance like nitre melts easily and in the molten state is perfectly transparent; when it cools, crystals form and, though these individually may be transparent, yet the solid mass is opaque. The reason for this is that the solid is not optically homogeneous, and therefore a ray of light cannot pass through it in a straight line. At each facet of a crystal light is deviated and reflected, and in the end is almost wholly scattered. Consequently, an object, even if it can be seen at all, can be discerned only in a blurred and indistinct fashion through such a medium.
There are very good reasons, however, for supposing that glass is not a true solid but an extremely viscous liquid. If glass is heated, it softens and begins to flow very sluggishly at first, but afterwards more readily. There is no abrupt change, as there generally is in passing from the solid to the liquid state. Similarly in cooling, there is no point at which it is possible to say that the glass is solidifying. The view that this substance is really a liquid is perhaps a little startling at first, but it becomes less so when we observe that a long glass rod supported at its ends in a horizontal position sags in the middle and is permanently deformed.
To avoid that change which would be technically called solidification by a scientist, the article which has been fashioned in glass is cooled down very slowly and gradually. This part of the process is called annealing; it may occupy some days in extreme cases, and it points to the fact that experience has shown that it is necessary to guard against some change which would normally take place if this precaution were neglected.
The change in glass which annealing is intended to prevent is known as devitrification. In spite of all precautions, this does occur sometimes, and specimens of old window glass are often seen to have lost their transparency completely and to have an opalescent sheen. In these cases, the silicates have crystallized.
An extreme case of badly annealed glass is illustrated by Rupert’s drops, a scientific curiosity of very old standing. These are “tears” of glass made by dropping the molten substance into water. When the tail of the drop is nipped off, the whole thing is shattered to powder with something like explosive violence. Clearly there is a very great internal strain, due to the fact that the outer parts have solidified and contracted, while the inner part is still warm and dilated.
Another remarkable feature of glass is the ease and simplicity with which it can be fashioned into articles of various shapes. As a plastic material, molten glass almost ranks with clay. This again is due to the property of passing through a viscous state, that is, one which is intermediate between a solid and a liquid.
Water Glass, or soluble glass, is mainly sodium silicate. It is made by fusing sand or powdered flint with caustic or with mild soda; sometimes, by digesting crushed flint or chert with caustic soda solution under considerable pressure in autoclaves or specially constructed boilers. In the latter case, no extraction is necessary; but in the former, the residue is treated with water and the solution evaporated until it becomes a viscous transparent liquid.
This liquid is used in various ways in industry. It is added to the cheaper varieties of yellow soap, and is employed as a mordant in dyeing and printing calico. An artificial sandstone is made by mixing sand, calcium chloride, and sodium silicate; the two last-named substances interact to form calcium silicate, which is insoluble in water. For domestic purposes, water glass is best known in connection with the preserving of eggs. When the film of water glass dries on the surface of the egg shell, the latter becomes impervious to air.