CHAPTER VII
ORGANIC ACIDS

Organic Chemistry. About a century ago, when the science of Chemistry was still in its infancy, several substances were known which could then only be obtained from animals or plants. The composition of these substances was not understood, and they were not classified; moreover, since none of them had ever been prepared artificially, it was supposed that it was impossible to do this—the reason given was that “vital force” was necessary for their production. In time, however, some of the most typical animal and vegetable products were prepared in the laboratory, and the belief in vital force disappeared.

In later times it was proved that substances like sugar, starch, urea, indigo, and a great many more, all contain the element carbon. At the present time, more than 100,000 compounds of this element are known; and since they resemble one another, and at the same time differ in several important respects from the compounds of other elements, it is both natural and convenient that they should be classed together and studied separately. This branch of Chemistry is called organic. It must not, however, be supposed that all organic compounds are necessarily produced by some living organism. A great many are, but there are many more which are purely synthetic products.

Inorganic Chemistry includes all the other elements and their derivatives. The element carbon, and also some of its simpler compounds, such as carbon monoxide, carbon dioxide, carbonic acid, and carbonates, are more appropriately placed in the inorganic section.

The acids which have been considered up to this point are all inorganic acids, and those which follow are organic. Sulphuric, nitric, and hydrochloric acids are often distinguished as the mineral acids in contradistinction to oxalic, citric, tartaric, and some others which were first obtained from unripe fruits and therefore called vegetable acids.

Organic acids have all the general properties of the class, but they are much weaker than the mineral acids mentioned above. This is shown by their solvent action on metals, oxides, and carbonates, which is in all cases slight.

Vinegar is the trade name for what is essentially a dilute solution of acetic acid which has been made by the acetous fermentation of saccharine fluids containing weak alcohol. In addition to acetic acid, vinegar contains minute quantities of a large number of compounds. Some of these help to produce that agreeable flavour and aroma which distinguishes vinegar from diluted acetic acid. The nature and quantity of the flavouring constituents depend mainly upon the nature of the alcoholic solution used.

Since the acetic acid in vinegar is always produced by fermentation, all processes for the manufacture of vinegar are essentially arrangements for promoting the vigorous growth and development of Mycoderma aceti, the organism which produces the vinegar ferment.

Like all other plants, Mycoderma aceti will flourish only under certain favourable conditions. In the first place, it requires nourishment, and therefore certain nitrogen compounds and salts must be present in the alcoholic solution. These are contained in wines, beer, cider, and malt liquors, but not in spirits of wine, which is pure alcohol distilled from liquids which have undergone vinous fermentation. If the plant is placed in dilute spirits of wine, only a very little acetic acid is formed, and then the action ceases because the solution does not contain the necessary food substances. Temperature also has a very marked effect on growth, the most favourable range being between 68° and 95° F.

Alcohol is changed to acetic acid by the process of oxidation, and therefore, in making vinegar, arrangements have to be made to bring together weak alcohol and air in the presence of the plant. The ferment which is secreted by the plant then causes an acceleration of the reaction. There is a considerable amount of similarity between fermentation and contact action. In this connection, it is interesting to note that the conversion of alcohol into acetic acid can also be brought about by exposing a mixture of alcohol vapour and air to the action of platinum black; in fact, there is one process for making vinegar in this way.