Fig. 13.

During distillation we obtain at the lower end of the condenser pure water and essential oil. When larger quantities are to be distilled it is advisable to use a Florentine flask as a receptacle for the separation of the oil and water (Fig. 13). It consists of a glass bottle from the bottom of which ascends a tube curved above; the latter rises high enough to bring the curvature slightly below the neck of the flask. During the distillation the flask becomes filled with water W, on which floats a layer of oil O; the excess of water escapes through a at d until the flask finally contains more oil and very little water.

Fig. 14.

When producing essential oils on a large scale, instead of the frail Florentine flasks it is advisable to use separators, the construction of which is illustrated in Fig. 14. They consist of glass cylinders, conical above and below, supported on a suitable frame. The water accumulating under the oil is allowed to escape by opening the stop-cock; when the first separator is filled with oil, the succeeding distillate passes through the horizontal tube into the next separator, etc.

When the distillation is carried on in an ordinary still, we obtain, besides the essential oil, a considerable quantity of aromatic water, that is, a solution of the oil in water.

An apparatus which obviates the losses caused thereby is that of Schimmel described below, which is well adapted to the manufacture on a large scale. The apparatus is patented.

The nearly spherical still D (Fig. 15) is surrounded by a jacket M; the inlet steam tube R is connected with a branch r which enters the interior of the still as a spiral tube with numerous perforations, while R opens into the space M. When r is opened, distillation takes place by direct steam; when R is opened, by indirect steam; when both faucets are opened, the still is heated at the same time with direct and indirect steam.