Fig. 29.
After the contents of A are extracted, m´ is opened, m closed, and steam is admitted through d into the jacket of A; the vapors of the solvent force the liquid part of the contents through ux into B. Overfilling of B is prevented by allowing the vapors of the solvent to escape at the proper time into the condenser through p by opening q. Then v is closed, q opened, and the steam present in A drawn off by an exhaust applied to p; as soon as p begins to cool, all the petroleum ether is distilled off, the steam is cut off at d, and the extract evacuated through t. The contents of B are brought into a still through D and E.
By employing greater pressure the extraction can also be effected by what is called displacement; the material to be extracted is placed in a stout-walled vessel S (Fig. 29) which is connected by a narrow tube at least ten yards long with the vessel F containing the solvent. Stopcock H is first opened, then stop-cock H1 which is closed as soon as fluid begins to flow from it. After the liquid has remained in contact with the material for from thirty to sixty minutes, H1 is opened very slowly, the liquid is allowed to escape and is displaced with water which is made to pass out of F in the same way as the solvent, until the latter is completely displaced from S.
After the solvent has been distilled off, the less volatile essential oil remains in the still almost pure, containing only traces of wax, vegetable fat or coloring matter which are of no consequence for our purposes. The last remnants of the solvent cannot be expelled by distillation, but by forcing through the essential oil a current of pure air for fifteen or twenty minutes. The essential oils then are of the purest, unexceptionable quality.
Fig. 30.
In the case of delicate oils it is better to use carbonic acid in place of air for expelling the last traces of the solvent, as the oxygen may impair the delicacy of the fragrance. For this purpose we use the apparatus illustrated in Fig. 30. In the large bottle A carbonic acid is generated by pouring hydrochloric acid over fragments of white marble. The carbonic acid passes into the vessel B filled with water which frees it from any adhering drops of hydrochloric acid; then into C filled with sulphuric acid to which it yields its water so that only pure carbonic acid escapes through the fine rose at the end of tube D which is made of pure tin, and as it passes through the oil in E it carries off the last traces of the volatile solvent. In its final passage through the water in F it leaves behind any oil that may have been carried with it.
As all the aromatic substances change in air by the gradual absorption of oxygen, and lose their odor—become resinified—these costly substances must be put into small bottles which they completely fill, and be preserved in a cool dark place, as light and heat favor resinification. The bottles must be closed with well-fitting glass stoppers.
Aromatic waters or eaux aromatisées, such as jasmine water (eau de jasmin), orange-flower water (eau de fleurs d’oranges, eau triple de Néroli, aqua naphæ triplex), etc., are made by distillation of these flowers with water and show a faint but very fine odor. When they contain, besides, dilute alcohol they are called spirituous waters or esprits. Those brought into commerce from southern France are of excellent quality.