First, then, we have the great forest-covered swamps, like those which now occupy the valley and delta of the Mississippi. They are composed in many cases of pure vegetable matter without any intermixture of earthy sediment. A dense growth of reeds, and shrubs, and herbage of every kind, covers the whole surface of the land, mixed up with the decaying leaves and prostrate trunks of forest-trees. Sir Charles Lyell mentions a very remarkable fact observed in the swamps of Louisiana. During an unusually hot season, when any part of a swamp is dried up, if the surface be set on fire, a pit is burned into the ground many feet deep, in fact, as far down as the fire can descend without meeting water; and it is then found that scarcely any residuum or earthy matter is left.[62]
Vegetable strata of this kind are produced, not only upon dry land by the growth and decay of forests, but also beneath the waters of lakes and estuaries, by the accumulation of Drift-timber borne along in the current of swollen rivers. The Mackenzie River, which drains a great part of Northwestern America, affords many admirable illustrations. Flowing as it does from south to north, it is subject to annual inundations when the snows begin to melt in the higher parts of its course, while the channel lower down, situated in colder latitudes, is still blocked up with ice. At this season then it overflows its banks, and sweeping through vast forests, carries away thousands of uprooted trees in its impetuous torrent.
“As the trees,” says Dr. Richardson, “retain their roots, which are often loaded with earth and stones, they readily sink, especially when water-soaked; and accumulating in the eddies, form shoals, which ultimately augment into islands. A thicket of small willows covers the new-formed island as soon as it appears above water, and their fibrous roots serve to bind the whole firmly together. Sections of these islands are annually made by the river; and it is interesting to study the diversities of appearances they present according to their different ages. The trunks of the trees gradually decay until they are converted into a blackish-brown substance resembling peat, but still retaining more or less of the fibrous structure of the wood; and layers of this often alternate with layers of clay and sand, the whole being penetrated, to a depth of four or five yards or more, by the long fibrous roots of the willows. A deposition of this kind, with the aid of a little infiltration of bituminous matter, would produce an excellent imitation of Coal, with vegetable impressions of the willow roots.
“It was in the rivers only that we could observe sections of these deposits; but the same operation goes on, on a much more magnificent scale, in the lakes. A shoal of many miles in extent is formed on the south side of Athabasca Lake by the Drift-timber and vegetable débris brought down by the Elk River; and the Slave Lake itself must in process of time be filled up by the matters daily conveyed into it from Slave River. Vast quantities of Drift-timber are buried under the sand at the mouth of the river, and enormous piles of it are accumulated on the shores of every part of the lake.”
Not unfrequently it happens that these strata of vegetable matter, with the roots and trunks of trees, their branches, fruits, and leaves, more or less perfectly preserved, are covered over by subsequent deposits. Such accumulations, we are assured by Doctor Mantell, have been found deep in the soil on the coast of England, in places that are still subject to periodical inundations. “The trees are chiefly of the oak, hazel, fir, birch, yew, willow, and ash; in short, almost every kind that is indigenous to this island occasionally occurs. The trunks and branches are dyed throughout of a deep ebony color by iron; and the wood is firm and heavy, and occasionally fit for domestic use; in Yorkshire and elsewhere, timber of this kind is sometimes employed in the construction of houses.”[63] Here, then, is the first stage of the conversion of wood into Coal,—a stratum more or less compacted together of vegetable matter, spread out sometimes over the surface of the dry land, sometimes on the floor of lakes and estuaries, and often buried beneath an accumulation of subsequent deposits.
The next stage in the process of transformation may be represented by those Peat Bogs which constitute one of the most remarkable physical characteristics of Ireland, covering as they do an area equal to one-tenth of the whole island. In these the vegetable matter is more closely condensed, but the structure of the plants from which the Peat is derived is still preserved, and may be distinctly recognized by the naked eye. Nay, we have still the prostrate trunks of trees lying around on every side as they fell to the ground in their ancient forests. The researches recently pursued upon this subject have brought to light a fact which is very much to our present purpose; for it seems to prove our thesis by direct evidence. “In Limerick, in the district of Maine, one of the States of North America, there are Peat Bogs of considerable extent, in which a substance exactly similar to cannel coal is found at the depth of three or four feet from the surface amidst the remains of rotten logs of wood and beaver sticks: the peat is twenty feet thick, and rests upon white sand. This coal was discovered on digging a ditch to drain a portion of the bog, for the purpose of obtaining peat for manure. The substance is a true bituminous coal, containing more bitumen than is found in any other variety. Polished sections of the compact masses exhibit the peculiar structure of coniferous trees, and prove that the coal was derived from a species allied to the American Fir.”[64] A similar phenomenon was observed by Doctor Dieffenbach in the Chathain Islands. In the same bed of peat he was able distinctly to trace a gradual transition from pure vegetable matter to a mineral substantially identical with common coal.[65]
But though Peat may thus, as it should seem, pass directly into pure Coal, there are many cases in which it first assumes a more imperfect form, known under the name of Lignite. This substance is described as of a brownish color, “soft and mellow in consistence when freshly quarried, but becoming brittle by exposure, the fracture following the direction of the fibre of the wood.”[66] It clearly occupies an intermediate position between Peat and Coal. Like the former, it still exhibits the stems and woody fibre of the plants from which it is derived, very little altered in their structure; while on the other hand it is already beginning to acquire some of the consistency and density of Coal; to which also it approaches much more closely in its chemical composition. It should be remembered, moreover, that Lignite does not designate a substance of a fixed, invariable character. On the contrary, under the one general name are comprised a definite number of varieties, leading from one extreme to the other by a series of almost insensible gradations; the extreme variety on one side being scarcely distinguishable from Peat, while the extreme variety on the other is practically identical with ordinary Coal. It can hardly be doubted, therefore, that Coal must have the same origin as Lignite, while it is at least equally certain that Lignite has been derived from Peat; and we have already seen what overwhelming evidence may be adduced to show that the origin of Peat is to be sought for in the sunken swamps and forests of a long past age.
Lastly, when we come to examine the texture of Coal itself, we find much to confirm the conclusion at which we have thus arrived. In beds of pure Coal the remains of many species of plants have been detected, and sometimes in such abundance as to constitute visibly the bulk of the Coal. Even large trees are sometimes found standing erect in the Coal fields, with their bark actually converted into this mineral. The annexed Figure represents a portion of the stem, together with the roots of a tall forest tree, Sigillaria, discovered not long ago in a Coal mine at Saint Helens, near Liverpool. The stem, which was nine feet high, was found erect in the seam of Coal, while the roots, ten in number, stretched away into the vegetable soil beneath.
Fig. 11.—Stem and roots of a Forest Tree, Sigillaria. From a Coal-mine, near Liverpool.