The mean annual temperature of the great forest-zone at the elevations where it displays the greatest luxuriance of growth on the island of Hawaii, that is, between 4,000 and 6,000 feet, would be estimated at 63° and 57° F., if we take the rate of decrease before employed of about three degrees per 1,000 feet. But remembering the heavy rainfall in this region and the usual occurrence of a protecting belt of cloud during the day, this might seem to be too high. According, however, to a table given by Mr. Jared G. Smith in his annual report of the Hawaii Agricultural Experiment Station for 1902, the average temperature at 4,000 feet would be 65°. I cannot help thinking this is excessive as an average for the island. In the latter part of May, 1897, the mean temperature during my sojourn of twelve days at elevations between 6,000 and 6,700 feet around the slopes of Mauna Kea was 51·2°; whilst for eight days in the first part of June in the same region the mean temperature was 58·2° at an altitude of 4,000 to 4,300 feet.
It is possible, as I have pointed out on a later page, to recognise in the different zones of vegetation the floras of a variety of latitudes; and these zones are to a large extent controlled by temperature as well as by other conditions. Thus the Fijian would be amongst familiar vegetation on the lower slopes of Mauna Kea, whilst the Maori would be at home halfway up the mountain-slopes, and the African from the upper forests of Kilima Njaro and Ruwenzori would find in the higher levels much to remind him of his native land.
The upper woods extend usually to 8,000 or 9,000 feet above the sea, and vegetation of a scrubby character occurs as high generally as 10,000 or 11,000 feet. The highest regions present only a barren rocky waste.
The Rainfall.
The Hawaiian Islands.—Although on account of the extensive deforesting of the Hawaiian Islands since their discovery the contrast between this group and that of Fiji is now, as regards rainfall, somewhat emphasised, it is almost certain that in early times the contrast was much less marked. In the lower levels the natives and sandal wood traders in the past, and the agriculturists in the present, have accomplished much in this direction. Between 1,000 and 3,000 feet, whole forests were in my time disappearing under fire and axe for the coffee plantations. Above those levels up to the higher limits of the woods, cattle were destroying the forests in a wholesale fashion; whilst foreign insects were proving themselves almost as great enemies to the vegetation. I remember an enterprising agriculturist explaining to me how he cleared the land of forest around his station. A large tract having been fenced in, the cattle were introduced. After destroying the undergrowth and the young trees, the animals attacked the bark of the trees, and in a year or two, without fire or axe, the land was cleared. The consequence of this unchecked destruction of the forests was in my time becoming only too evident. When I passed through Ookala, on the Hamakua coast, at the end of May, 1897, there was a water famine. Water was sold at a quarter of a dollar a bucket, and the allowance for a family was three oil-cans a week. Stealing water was a crime and punished by the plantation authorities by dismissal or a five-dollar fine.
If we could look back for fifty or sixty years—I am now quoting from the reports of Prof. Koebele and Dr. Stubbs—we should see large forests where we now see barren slopes and plains. Originally forests covered the upland plateaux and mountain slopes of all the islands. Now much of the original forests has been removed, and large areas of naked soils and bare rocks remain. The present forest area, writes Mr. Giffard, the editor of the Hawaiian Forester (August, 1904), is about 20 per cent. of the islands, a small fraction of what it was a hundred years ago. It is, however, very satisfactory to learn that American energy is now combating this evil. Already in the January number of the same journal is to be found a report by Mr. W. L. Hall, of the Bureau of Forestry, on “The Forests of Hawaii”; and now, under the charge of Mr. Jared G. Smith, institutions have been formed and experiment stations have been established for “the intelligent and skilful cultivation of the soil.” Hawaii owes much to the United States Department of Agriculture. May we in England take the cue in the case of our own Crown colonies!
Under these circumstances the comparison of the present rainfall of Hawaii must be carried out with discrimination. But it may be at once observed that to make a contrast in detail between the rainfalls of these three groups is quite beyond the province of this work; and this remark applies also to the other observations on the climatic conditions. I can only treat the subject in an illustrative fashion in connection with the general subject of their floras.
Thanks to Professor Lyons, the Government meteorologist, the rainfall has long been systematically investigated. It may be said to range anywhere between 10 and 300 inches. As in most groups within the trade-wind belts, there is a great contrast in the rainfall between the weather and leeward sides of the islands, which is well exhibited in the large island of Hawaii. Whilst in the Hilo district on the wet side of the island the annual rainfall near the coast is about 120 inches, on the Kona coast of the dry side of the island it may be anything between 20 and 50 inches and it may fall to less than 10. The effect of elevation is, however, evident on both the weather and lee sides of the island. Thus at a height of 1,650 feet in the Hilo district it is as much as 180 inches, and at a greater elevation 210 inches. At a height of about 1,600 feet at Kealakekua, on the dry side of the island the average yearly rainfall, according to the results kindly supplied to me by the Rev. S. H. Davis, was for the six years, 1891-6, 60 inches. On the beach, as he says, it is “very much less,” probably not 30 inches. Dr. Maxwell, in his report on “Irrigation in Hawaii,” mentions a locality in Maui where the rainfall at the sea-shore was 28 inches, and at a height of 2,800 feet up the mountain side as much as 179 inches. In the region of the cloud-belt, which coincides with that of the forest-zone on the slopes of the great mountains of Hawaii and extends up from about 3,000 to 7,000 or 8,000 feet above the sea, the average annual rainfall would probably be rarely under 200 inches, and in some localities it might approach 300 inches. There are some particularly wet mountains, and amongst these may be placed the high table-land of Kauai (4,000 feet) and the flat summit of Mount Eeka (6,000 feet) in West Maui. Here in a region almost of eternal mist we have developed a special bog-flora.
Hillebrand describes the flat top of Mount Eeka as “wrapt in a cloud of mist nearly the whole year.” Whilst descending this mountain I was overtaken by the darkness at a little under 5,000 feet above the sea. Through the night there was a continuous soft rain, or rather a heavy wet mist, and I passed it under conditions suggestive of living in a sponge. Everything was reeking with moisture. The air was saturated with it, and water dripped from every leaf and branch, whilst the ground on which I stood was soft and yielding and soaked with water like a sponge. The surface was cut up by numerous narrow water-channels ten to twenty feet deep and only a couple of feet wide, their very existence almost concealed by ferns, whilst torrents rushed along at the bottom and kept up a strange music through the night. This was the longest night I have ever experienced, as my standing-ground was very limited, and with a water-channel a foot or two away on either side I had to keep on my legs until the dawn.
Above the cloud-belt, at elevations of 10,000 feet and over, the rainfall is evidently very small. I have before remarked that during my stay of twenty-three days (August 9-31) on the summit of Mauna Loa (13,600 feet) the rain did not exceed one-third of an inch in amount. I have by my side the report to the Weather Bureau, compiled by Prof. Lyons, on the rainfall of this large island of Hawaii for the entire month (August, 1897); and it enables one to make a comparison, in some respects unique, of the distribution of the August rainfall on Mauna Loa, from its base to its summit, where it occupies the breadth of the island. Whilst on the east or wet side from the coast up to 1,500 feet amounts ranging from 11 to 15 inches were measured, on the west or dry side between one and two inches were registered at the coast, and 10 inches at Kealakekua, about 1,600 feet above the sea. But the level of maximum precipitation would lie much further up the mountain slopes on either side, probably at an altitude of 4,000 or 5,000 feet, and here the rainfall for the month could not have been less in either case than 20 inches. Above this line of greatest rainfall the amount of atmospheric precipitation would become less and less until beyond the upper forest zone above 10,000 feet to the summit (13,600 feet) the quantity would be very small; and judging from my observations, that covered three-fourths of the month, the rainfall on the top of the mountain for August would not have far exceeded half an inch.