The dry climate of the summits of Mauna Kea and Mauna Loa is reproduced on the tops of the Java mountains and on the summits of the Owen Stanley Range in New Guinea. Sir W. Macgregor found a fine and dry climate on the top of the mountains last named, beyond the limits of the forests, which extend to 12,000 feet above the sea. Below lay the cloud belt, a zone of moss and fog, where at an elevation of 7,000 to 8,000 feet everything was reeking with moisture (Journ. Roy. Geogr. Soc. 1890). Observers at the coast often little imagine, when looking at a cloud-concealed mountain peak, that although the cloud-belt from below looks black and lowering and rain is falling heavily in the gloomy forests, there is on the upper side a region of bright sunshine, and that the peak stands out, unseen by them, above a sea of clouds sparkling brilliantly in the sun and dazzling in their whiteness. It will be seen from the table given in [Note 61], that during my sojourn on the summit of Mauna Loa the sky was cloudless or almost free from cloud during nearly half the time. The mean cloudiness in the forenoon for twenty-two days was 1·3 and for the afternoon 3·5, whilst the nights were cloudless.

The Rainfall of Fiji.—The rainfall of Fiji is known to be very large. In illustration I will take Vanua Levu, the second largest island, partly because of my familiar acquaintance with it, and partly because I have at my disposal measurements for both the lee and weather sides of the island—the first dry and characterised by a scanty and peculiar vegetation, the second humid and densely forested. At Davutu, near the sea-level on the weather or wet side of the island, the average yearly fall for a period of sixteen years up to 1898 was 160 inches (these observations were made in the grounds of the manager’s house and I am indebted to Mr. Barratt for allowing me to inspect them). The mountainous backbone of the island, which has an elevation ranging usually from 2,000 to 3,000 feet, is generally in the rain-clouds. During the months I was occupied in examining the geology of these mountains, it was a common experience to be drenched to the skin all day long, and I cannot doubt that the annual rainfall in the higher levels must often reach 300 inches. Those familiar with the “sun-burnt” lands or “talasinga” plains that mainly form the north or lee side of the island, would expect a great difference in rainfall as compared with the south or weather side. There is a marked difference, it is true, but it is far less than we might have looked for. At Delanasau on the north coast, less than a hundred feet above the sea, the mean rainfall for seven years (1871-77), according to the observations of Mr Holmes, was 113 inches, and the range 80 to 159 inches (see Horne’s Year in Fiji). In discussing the origin of the arid-looking plains on the north or lee side of the island in [Note 22], I have shown that the explanation is to be found not so much in the rainfall as in the dryness of the air as indicated by the relative humidity.

The rainfall varies greatly in and around Vanua Levu, but there is little doubt that by far the greatest bulk of the rain is precipitated on the upper weather slopes of the mountainous backbone of the island. Taviuni, which lies off its weather coast, is probably the wettest among the smaller islands of the group. In 1877, when 80 inches were recorded by Mr. Holmes at Delanasau on the north side of Vanua Levu and 73 inches at Levuka in the island of Ovalau, 251 inches were measured in Taviuni at Ngara Walu 564 feet above the sea; and in 1875 the rainfall recorded at Taviuni was 212 inches, and at Delanasau 126 inches (Horne).

Fortunately, the Fijian islands have not been long enough occupied by the whites to produce much effect on the rainfall through the destruction of the forests. A significant warning, however, has been given in the vicinity of Levuka. The woods of the hills around the town, as we learn from Mr. Horne, were cut down to prevent them from affording shelter to the unfriendly natives of the interior, the result being to reduce the number of rainy days in a few years from 256 to 149 per annum.

The Tahitian rainfall.—The annual rainfall of the coast districts of Tahiti is placed at about 50 inches (Encycl. Brit. vol. 23); but, as is observed by Nadeaud and Drake del Castillo, the rain-clouds gather round the peaks, and the precipitation is much greater in the interior than at the “littoral,” with a corresponding result in a striking difference between the vegetation of the two regions. Probably, therefore, the rainfall for the year on the wooded mountain slopes and at the heads of valleys where the vegetation is most luxuriant would be over 100, and perhaps as much as 150 inches in places. (The annual rainfall in Rarotonga is, according to Cheeseman, about 90 inches.)

It is evident that in the three groups of Hawaii, Fiji, and Tahiti, the rainfall varies greatly with situation and with elevation; but the contrast is much greater in Hawaii than in Fiji. Thus there would be scarcely any place on the lee side of Vanua Levu where the average annual fall would be less than 80 or 90 inches, except perhaps in the Undu Promontory, whilst on the lava-bound coast of the west or lee side of Hawaii, it may be reduced to 20 inches and less. There is no doubt that this was to some extent the case in pre-European times, since Fiji must have possessed for ages, on the northern sides of the larger islands, its arid “talasinga” or “sun-burnt” plains; and in the island of Hawaii there must have always been vast, scantily vegetated lava fields at the sea-border. It is probable, however, that it is in the older islands of the Hawaiian group, those where the volcanic forces have been long extinct, that the rainfall has been chiefly affected by deforestation. Speaking generally, in pre-European times the climatic conditions of the lower levels of the group, that is below 4,000 feet, which are alone comparable with Fiji, were less contrasted with the climatic conditions of the Fijian islands than they are at present. By reason of their great elevation, the Hawaiian islands present a mountain climate not found in Fiji, and scantily represented in Tahiti. It is, therefore, in the flora of the Hawaiian uplands that we should expect to find the great distinguishing feature between that group and Fiji.

Summary of the Chapter.

(1) Whilst the winds and the currents have been working tranquilly through the ages, bringing always the same vascular cryptogams and shore-plants to the Pacific islands, the bird has ever been a disturbing factor in the inland flora, and changes often of a revolutionary character have taken place from time to time within the forest-zone.

(2) In the discussion of the inland plants of these islands, the Fijian, Tahitian and Hawaiian areas are taken as centres of development and dispersal, and as including the groups around.

(3) On account of the contrast in physical conditions presented by these archipelagoes, differences with which some of the most distinctive features of the floras are to be connected, a comparison of the islands from this standpoint is first necessary.