We see this also well illustrated in the floating seeds and fruits of the Thames drift. Most of them fail to germinate in the drift at the end of the summer and the beginning of autumn, and defer the process until the following spring, when they germinate freely in the water under much cooler conditions than those which they experienced in the early part of their flotation in the drift. There are, however, exceptions to this rule. Plants like Caltha palustris, for instance, are rarely represented in the spring seed-drift of ponds and rivers, because most of the fruits or seeds germinated soon after falling into the water in the previous summer.

In most of my sea-water experiments in England the immersion had a very marked influence, not in causing premature germination and destroying the germinating capacity, as often happens with the floating seeds of Convolvulaceæ and Leguminosæ, especially in the tropics, but in postponing without injury to the seed the process of reproducing the plant. Such seeds or fruits when placed in fresh water after many months of flotation in sea-water germinated very freely in a few days, whilst those left in the sea-water under precisely the same conditions remained unchanged. This is true of many of the seeds and fruits found in the Thames drift, such as those of Ranunculus repens, Lycopus europæus, Rumex, &c. A striking instance was also afforded by the seeds of Arenaria (Honckeneya) peploides, where seeds transferred directly to fresh water, after many months flotation in sea-water, germinated in a few days; whilst those left in the sea-water remained unchanged. This subject is discussed at length in [Note 19], and needs no further mention here.

If the seeds of many plants in Great Britain postpone through immaturity their germination to the following or even to the second spring, it goes without saying that this does not exclude temperature as the ultimate determining factor in germination. The immaturity of seeds adds another link to the series of the germination-range in plants. This range begins with the plants where germination takes place on the tree and the seedlings hang suspended from the branches, as in the typical mangroves Rhizophora and Bruguiera. Here, as is shown in [Chapter XXX.], there is evidently no period of repose between the completion of the maturation of the seed and the commencement of germination. The range ends with the detachment of immature seeds which ripen apart from the parent plant, and may postpone the germinating process for months and often for years. All intermediate stages exist between these two extremes. Thus the seedling may at once detach itself from the parent as in Avicennia, or the germinating process on the plant may be limited to the protrusion of the radicle as in Laguncularia, or the seeds may be quite mature and ready to germinate as soon as they fall to the ground, as we find with many small seeded plants. All the stages, of which only a few are here indicated, are full of suggestiveness for the student of plant-life.

This subject is dealt with from other standpoints in [Chapter XXX.], but the reader will now see more clearly what was meant when I said that the study of the behaviour of the floating seed leads us to the borderland of vivipary. In this range of the germinating process we may possess an epitome of the history of the climatic conditions of plant-life from an early era in the world’s story, beginning with those ages when perhaps under the uniform conditions that then prevailed, all plants were more or less coast-plants and more or less viviparous, and coming down to the present era when with an extensive and varied land-surface there is great variety both in climate and in the range of germination. The mangrove-swamp and its viviparous trees would thus represent from this point of view a condition of things once more or less universal on the globe.

Summary of the Chapter.

(a) The tendency of the floating seed or fruit to germinate in the brackish water of tropical estuaries is especially characteristic of the plants of the mangrove-swamp and their vicinity; but with those of the beach trees that occur in the river-drift it is rarely if at all to be observed.

(b) From the wide distribution of plants of the mangrove-formation it is evident that this readiness of the floating seed or fruit to germinate is not prejudicial to the dispersal of the species.

(c) It may perhaps be in the main attributed to a strain of vivipary running through all the plants of the mangrove-formation, which finds its extreme development in the viviparous species, where germination takes place on the tree. But it is probably favoured by the superheating of the waters of tropical estuaries.

(d) In the case of the buoyant seeds of several climbers and creepers of the Leguminosæ and Convolvulaceæ, more or less littoral in their station, it is shown that in warm water, whether fresh or salt, a good proportion are apt to sink through incipient germination, which results when the experiment is made in sea-water in the death of the embryo.

(e) Though in tropical currents of ordinary temperature a good number of such floating seeds would escape this risk, it is argued that there are certain warm areas in the tropical seas that would prove much more fatal to the chances of these drifting Leguminous and Convolvulaceous seeds than the icy waters of a polar current. It is thus held that these seeds often sink in mid-ocean in tropical latitudes through abortive germination.