(f) The study of the behaviour of the floating seed or fruit leads us to the borderland of vivipary. In the scale of the germinative capacity of plants it is possible to arrange a continuous series that commencing with the mangroves, where germination takes place on the tree, ends with those numerous inland plants where seeds are liberated in an immature condition.

(g) It is suggested that the viviparous habit may have been the rule under the uniform climatic conditions of early geological periods and that with the differentiation of climates that marked the emergence and extension of the continental areas the viviparous habit has been lost, except in those regions of the mangrove-swamps which to some extent retain the climatic conditions once general over the globe. With differentiation of climate the true seed-stage with its varying rest-periods has been developed.

CHAPTER X
THE RELATION OF THE BUOYANCY OF SEEDS AND SEEDVESSELS TO THE DENSITY OF SEA-WATER

The general principles concerned.—The subject assumes a statistical character.—Seeds and seedvessels are as a rule either much heavier than sea-water or much lighter than fresh water.—The present littoral plants with buoyant seeds or seedvessels could be equally well dispersed by currents in oceans of fresh water.—Seed-buoyancy has no relation either in the present or in the past to the density of the sea.—Though an accidental attribute, the specific weight of seeds has had a profound influence on plant-distribution.—Summary.

To find amongst the results of my numerous experiments examples illustrating the influence of density on flotation has not been so easy as I at first imagined. Excluding all adventitious causes of buoyancy, a matter discussed in [Note 40], it may be inferred that the great majority of seeds and fruits sink both in fresh water and sea-water. Of those that are buoyant many float indefinitely in both waters, whilst in a very few cases, where the floating power is derived from an outer fleshy covering, as with the fruits of Potamogeton natans, the fruits float a much shorter time in sea-water than in fresh water, on account of the injurious effect of the salt upon their coats.

Experiments have to be specially directed towards this subject. It would be useless to experiment in fresh water at one time and in sea-water a month later. Nor would it answer to employ seeds and fruits from different localities, since variations in this way sometimes occur. It is necessary that the experiments should be made on seeds or fruits collected at the same time and place, and that they should be simultaneous and carried on under the same conditions. As the discussion proceeds, the reader will perceive that many interesting points are opened up, and that such an investigation, instead of being, as the title of this chapter might suggest, an abstruse and disconnected inquiry, is of considerable importance in relation to the dispersal of plants through the agency of currents.

Guided by the results of my experiments in this direction I will proceed to lay down certain general principles:—

(A) In the first place it may be accepted as a general rule that seeds or seedvessels that sink in fresh water sink also in sea-water, the difference in density between the two being rarely a factor of any importance in determining buoyancy. The great majority of seeds and fruits come under this category, since, as is pointed out in [Chapter VIII.], only a small proportion of the whole, say a tenth, possess floating power. We might cite, as illustrative of this principle in temperate regions, almost all the 240 species included in the non-buoyant group of the British plants experimented on (see [Chapter III.] and [Note 10]). As a general rule this is true alike of the small seeds of the Cruciferæ and Scrophulariaceæ, of the nutlets of the Labiatæ and Boragineæ, of the genus Scirpus, and of the dust-like seeds of Juncus. The results of my experiments on the plants of the tropical Pacific are no doubt typical of other tropical regions; and if I wished to quote instances, I should have to enumerate not only most of the plants without buoyant seeds or fruits that are mentioned in the Fijian and Hawaiian lists given under Notes [2], [4], and [6], but also to appeal to tropical regions generally.

(B) One can carry the principle above-named yet further and say that not only as a rule do seeds or fruits that sink in fresh water sink also in sea-water, but that so far as tested many of them sink in water of much greater density than that of ordinary sea-water (1·026). Thus, for instance, the seeds of Nuphar luteum, Scrophularia aquatica, and Stellaria aquatica, the nutlets of Polygonum persicaria, and the achenes of Aster tripolium sank in sea-water the density of which had been raised to 1·050, the limit of the experiment. The minute seeds of Juncus communis and J. glaucus and the larger seeds of Luzula campestris, even after drying for six months, sank in salt water having a density of 1·075. It would, however, seem probable that for most of these small seeds and seedvessels a density of 1·100 would prove to be the critical point. If this is so, then most of those that sink in sea-water would float in the dense water (1·160) of the Dead Sea.

However, my investigations have only gone a small way in this direction; and perhaps some of my readers will pursue the inquiry. I will take the case of the nutlets of Scirpus palustris. They sink in fresh water and in sea-water, or may float in rare cases for a day or two. Out of 100 of these seed-like fruits, 25 floated in salt water of a density of 1·075, 13 in water of 1·050, 7 in sea-water (1·025), and 3 in fresh water, (1·000). It would thus appear that the proportion of buoyant nutlets is doubled with every increase of ·025 of the density scale. At this rate of increase they would all float in salt water of a density of 1·125, which may be regarded as the suitable medium for the flotation of the fruits of this Scirpus.... The seeds of Glaucium luteum, the Sea-Poppy, have no buoyancy either in fresh water or in sea-water even after prolonged drying. They all sank in water of a density of 1·050, but 18 per cent. floated when the density was raised to 1·075. At the rate of increase noticed in the case of Scirpus palustris, all the seeds would float in water of a density of 1·130-1·140.... The acorns of the Common Oak (Quercus robur) have usually but little buoyancy unless they have been long drying. After soaking in fresh water for half an hour 100 mature fruits, without the cupule, that had been kept a fortnight, I found that only 2 floated in fresh water, 6 in sea-water (1·025), and 18 in water of 1·050. At this rate of increase all would float in water having a density of 1·080-1·090.