Fig. 3.

The hair itself is covered with a layer of overlapping scales, like the slates on a roof, but of irregular form. These give it a serrated outline at the sides, strongly developed in wool. Within these scales, which are sometimes called the "hair cuticle," is a fibrous substance, which forms the body of the hair; and sometimes, but not always, there is also a central and cellular pith, which is mostly transparent, though under the microscope it frequently appears black and opaque, from the optical effect of imprisoned air. On boiling or long soaking in water, alcohol, or turpentine, these air-spaces become saturated with the liquid, and then appear transparent.

The fibrous part of the hair is made up of long spindle-shaped cells, and contains the pigment which gives the hair its colour. The hair of the deer differs from that of most other animals in being almost wholly formed of polygonal cells, which, in white hairs, are usually filled with air. At its base, the hair swells into a bulb, which is hollow, and rests on a sort of projecting knob of the corium, called the hair-papilla. This has blood-vessels and nerves, and supplies nourishment to the hair. The hair-bulb is composed of round, soft cells, which multiply rapidly; as they grow, they press upward through the hair-sheath, become elongated and hardened, and form the hair. In dark hairs, both the cells of the hair itself and those of its follicle or sheath are strongly pigmented, but the hair much the more so, and hence the bulb has usually a distinct dark form. The dark-haired portions of a hide from which the hair has been removed by liming still remain coloured, from the pigmented cells of the hair-sheaths, which can only be got out completely by bating and scudding. The cells outside the bulb, shown at f, in [Fig. 4], pass upwards as they grow, and form a distinct coating around the hair, which is called the "inner root-sheath." This again consists of 2 separate layers, of which the inner is "Huxley's," the outer, "Henle's." They arise from the same cells in the base of the hair; but in the inner layer, these remain polygonal and nucleated, while in the outer, they become spindle-shaped and without nuclei. The inner root-sheath does not extend to the surface of the skin, but dies away below the sebaceous glands. This figure represents an ox-hair root, mag. 200 diam.: a, fibrous substance of hair; b, hair cuticle; c, inner root-sheath; d, outer root-sheath; e, dermic coat of hair-sheath; f, origin of inner sheath; g, bulb; h, papilla.

Fig. 4.

Outside the inner root-sheath is a layer of nucleated cells, continuous with those of the epidermis, and of the same character. This is the "outer root-sheath," and is shown at d, [Fig. 4]. This, together with the whole of the epidermis, is covered next the corium with an exceedingly fine membrane, called the "hyaline" or glassy layer. It is possible that this forms the very thin buff-coloured "grain" of tanned leather, which evidently is of different structure from the rest of the corium, since, if it gets scraped off before tanning, the exposed portion of the pars papillaris remains nearly white, instead of colouring. The whole of the hair-sheath is enclosed in a coating of elastic and connective-tissue fibres, which are supplied with nerves and blood-vessels, and form part of the corium. Near the opening of the hair-sheaths to the surface of the skin, the ducts of the sebaceous or fat-glands (e, [Fig. 1]), pass into them, and secrete a sort of oil to lubricate the hair. The glands themselves are formed of large nucleated cells, arranged somewhat like a bunch of grapes; one is shown highly magnified in [Fig. 5]: a, sebaceous gland; b, hair-stem; c, part of erector pili muscle. The upper and more central cells are most highly charged with fat, which is shown by the darker shading.