Fig. 5.

As already remarked, the sudoriferous or sweat-glands are also derived from the epidermis layer. They are shown at f, [Fig. 1], and on a larger scale (200 diam.) in [Fig. 6]: a, windings laid open in making section; they consist, in the ox and sheep, of a large wide tube, sometimes slightly twisted. In this, they differ considerably from those of man, which form a spherical knot of extremely convoluted tube. The walls of these glands are formed of longitudinal fibres of connective tissue of the corium, lined with a single layer of large nucleated cells, which secrete the perspiration. The ducts, which are exceedingly narrow, and with walls of nucleated cells like those of the outer hair-sheaths, sometimes open directly through the epidermis, as shown at g, [Fig. 1], but more frequently into the orifice of a hair-sheath, just at the surface of the skin. Each hair is provided with a slanting muscle (h, [Fig. 1]), called the arrector or erector pili, which is contracted by cold or fear, and causes the hair to "bristle," or stand on end; by forcing up the attached skin, it produces the effect known as "goose-skin." The muscle, which is of the unstriped or involuntary kind, passes from near the hair-bulb to the epidermis, and just under the sebaceous glands, which it compresses.

Fig. 6.

The corium or true skin is principally composed of interlacing bundles of white fibres, of the kind known as "connective tissue"; these are composed of fibrils of extreme fineness, cemented together by a substance of different composition from the fibres themselves. This may be demonstrated by steeping a small piece of hide for some days in a stoppered bottle in lime-, or baryta-water, in which the inter-fibrillar substance is soluble, and then teasing a small fragment of the fibre with needles on a glass microscope-slide, and examining with a power of at least 200-300 diam. In the middle portion of the skin, these bundles of fibre are closely interwoven; but next the body, they gradually become looser and more open, forming the pars reticularis (or netted part); and the innermost layer is a mere network of loose membrane, generally loaded with masses of fat-cells, and hence called adipose tissue.

It is this adipose tissue which is removed in the "fleshing" process. On the other hand, the outermost layer, just beneath the epidermis, is exceedingly close and compact, the fibre-bundles that run into it being separated into their elementary fibrils, which are so interlaced that they can scarcely be recognised. This is the pars papillaris, and forms the lighter-coloured layer, called (together with its very fine outer coating) the "grain" of leather. It is in this part that the fat-glands are embedded, while the hair-roots and sweat-glands pass through it into the looser tissue beneath.

Besides the connective-tissue fibres, the skin contains a small proportion of fine yellow fibres, called "elastic" fibres. If a thin section of hide be soaked for a few minutes in strong acetic acid, and then examined under the microscope, the white connective-tissue fibres become swollen and transparent, and the yellow fibres may then be seen, as they are scarcely affected by the acid. The hair-bulbs and sweat- and fat-glands are also rendered distinctly visible.

The nerves of the skin are very numerous, each hair being supplied with fibres passing into both the papilla and sheath. They also pass into the skin papillæ. They cannot readily be seen, without special preparation, and, so far as is known, exercise no influence on the tanning process. "Breaking the nerve" is a technical term, which signifies a thorough stretching and softening of the skin, but has nothing to do with nerves properly so called. The blood- and lymph-vessels are, from the present point of view, somewhat more important. They may often be seen in sections, and are lined with nucleated cells, similar to those of the glands. These are surrounded by coatings of unstriped muscular fibre, running both around and lengthways, and also by connective-tissue fibres. In the arteries, the muscular coating is much stronger than in the veins.