But for our present purpose it is unnecessary to pursue the subject of lunar motion into its abstruser details. To understand why the moon moves rapidly among the stars, it is sufficient to remember that she is whirling quickly round the earth, so as to complete her circuit in a little less than a month. We see her at all times projected upon the distant background of the sky on which are set the stellar points of light, as though intended for beacons to mark the course pursued by moon and planets. The stars themselves have no such motions as the moon; situated at a distance almost inconceivably great, they may, indeed, be travellers through empty space, yet their journeys shrink into insignificance as seen from distant earth. It requires the most delicate instruments of the astronomer to so magnify the tiny displacements of the stars on the celestial vault that they may be measured by human eyes.

Let us again recur to our supposed observer watching the moon night after night, so as to record the stars closely approached by her. Why should he not some time or other be surprised by an approach so close as to amount apparently to actual contact? The moon covers quite a large surface on the sky, and when we remember the nearly countless numbers of the stars, it would, indeed, be strange if there were not some behind the moon as well as all around her.

A moment's consideration shows that this must often be the case; and in fact, if the moon's advancing edge be scrutinized carefully through a telescope, small stars can be seen frequently to disappear behind it. This is a most interesting observation. At first we see the moon and star near each other in the telescope's field of view. But the distance between them lessens perceptibly, even quickly, until at last, with a startling suddenness, the star goes out of sight behind the moon. After a time, ranging from a few moments to, perhaps, more than an hour, the moon will pass, and we can see the star suddenly reappear from behind the other edge.

These interesting observations, while not at all uncommon, can be made only very rarely by naked-eye astronomers. The reason is simple. The moon's light is so brilliant that it fairly overcomes the stars whenever they are at all near, except in the case of very bright ones. Small stars that can be followed quite easily up to the moon's edge in a good telescope, disappear from a naked-eye view while the moon is still a long distance away. But the number of very bright stars is comparatively small, so that it is quite unusual to find anyone not a professional astronomer who has actually seen one of these so-called "occultations." Moreover, most people are not informed in advance of the occurrence of an opportunity to make such observations, although they can be predicted quite easily by the aid of astronomical calculations. Sometimes we have occultations of planets, and these are the most interesting of all. When the moon passes between us and one of the larger planets, it is worth while to observe the phenomenon even without a telescope.

Up to this point we have considered occultations chiefly as being of interest to the naked-eye astronomer. Yet occultations have a real scientific value. It is by their means that we can, perhaps, best measure the moon's size. By noting with a telescope the time of disappearance and reappearance of known stars, astronomers can bring the direct measurement of the moon's diameter within the range of their numerical calculations. Sometimes the moon passes over a condensed cluster of stars like the Pleiades. The results obtainable on these occasions are valuable in a very high degree, and contribute largely to making precise our knowledge of the lunar diameter.

There is another thing of scientific interest about occultations, though it has lost some of its importance in recent years. When such an event has been observed, the agreement of the predicted time with that actually recorded by the astronomer offers a most searching test of the correctness of our theory of lunar motion. We have already called attention to the great inherent difficulty of this theory. It is easy to see that by noting the exact instant of disappearance of a star at a place on the earth the latitude and longitude of which are known, we can both check our calculations and gather material for improving our theory. The same principle can be used also in the converse direction. Within the limits of precision imposed by the state of our knowledge of lunar theory, we can utilize occultations to help determine the position on the earth of places whose longitude is unknown. It is a very interesting bit of history that the first determination of the longitude of Washington was made by means of occultations, and that this early determination led to the founding of the United States Naval Observatory.

On March 28, 1810, Mr. Pitkin, of Connecticut, reported to the House of Representatives on "laying a foundation for the establishment of a first meridian for the United States, by which a further dependence on Great Britain or any other foreign nation for such meridian may be entirely removed." This report was the result of a memorial presented by one William Lambert, who had deduced the longitude of the Capitol from an occultation observed October 20, 1804. Various proceedings were had in Congress and in committee, until at last, in 1821, Lambert was appointed "to make astronomical observations by lunar occultations of fixed stars, solar eclipses, or any approved method adapted to ascertain the longitude of the Capitol from Greenwich." Lambert's reports were made in 1822 and 1823, but ten years passed before the establishment of a formal Naval Observatory under Goldsborough, Wilkes, and Gilliss. But to Lambert belongs the honor of having marked out the first fundamental official meridian of longitude in the United States.


[MOUNTING GREAT TELESCOPES]