There are many interesting practical things about an astronomical observatory with which the public seldom has an opportunity to become acquainted. Among these, perhaps, the details connected with setting up a great telescope take first rank. The writer happened to be present at the Cape of Good Hope Observatory when the photographic equatorial telescope was being mounted, and the operation of putting it in position may be taken as typical of similar processes elsewhere. (See also [p. 86.])

Forty-Inch Telescope, Yerkes Observatory,
University of Chicago.

In the first place, it is necessary to explain what is meant by an "equatorial" telescope. One of the chief difficulties in making ordinary observations arises from the rising and setting of the stars. They are all apparently moving across the face of the sky, usually climbing up from the eastern horizon, only to go down again and set in the west. If, therefore, we wish to scrutinize any given object for a considerable time, we must move the telescope continuously so as to keep pace with the motion of the heavens. For this purpose, the tube must be attached to axles, so that it can be turned easily in any direction. The equatorial mounting is a device that permits the telescope to be thus aimed at any part of the sky, and at the same time facilitates greatly the operation of keeping it pointed correctly after a star has once been brought into the field of view.

To understand the equatorial mounting it is necessary to remember that the rising and setting motions of the heavenly bodies are apparent ones only, and due in reality to the turning of the earth on its own axis. As the earth goes around, it carries observer, telescope, and observatory past the stars fixed upon the distant sky. Consequently, to keep a telescope pointed continuously at a given star, it is merely necessary to rotate it steadily backward upon a suitable axis just fast enough to neutralize exactly the turning of our earth.

By a suitable axis for this purpose we mean one so mounted as to be exactly parallel to the earth's own axis of rotation. A little reflection shows how simply such an arrangement will work. All the heavenly bodies may be regarded, for practical purposes, as excessively remote in comparison with the dimensions of our earth. The entire planet shrinks into absolute insignificance when compared with the distances of the nearest objects brought under observation by astronomers. It follows that if we have our telescope attached to such a rotation-axis as we have described, it will be just the same for purposes of observation as though the telescope's axis were not only parallel to the earth's axis, but actually coincident with it. The two axes may be separated by a distance equal to that between the earth's surface and its centre; but, as we have said, this distance is insignificant so far as our present object is concerned.

There is another way to arrive at the same result. We know that the stars in rising and setting all seem to revolve about the pole star, which itself seems to remain immovable. Consequently, if we mount our telescope so that it can turn about an axis pointing at the pole, we shall be able to neutralize the rotation of the stars by simply turning the telescope about the axis at the proper speed and in the right direction. Astronomical considerations teach us that an axis thus pointing at the pole will be parallel to the earth's own axis. Thus we arrive at the same fundamental principle for mounting an astronomical telescope from whichever point of view we consider the subject.

Every large telescope is provided with such an axis of rotation; and for the reason stated it is called the "polar axis." The telescope itself is then called an "equatorial." The advantage of this method of mounting is very evident. Since we can follow the stars' motions by turning the telescope about one axis only, it becomes a very simple matter to accomplish this turning automatically by means of clock-work.

The "following" of a star being thus provided for by the device of a polar axis, it is, of course, also necessary to supply some other motion so as to enable us to aim the tube at any point in the heavens. For it is obvious that if it were rigidly attached to the polar axis, we could, indeed, follow any star that happened to be in the field of view, but we could not change this field of view at will so as to observe other stars or planets. To accomplish this, the telescope is attached to the polar axis by means of a pivot. By turning the telescope around its polar axis, and also on this pivot, we can find any object in the heavens; and once found, we can leave to the polar axis and its automatic clock-work the task of keeping that object before the observer's eye.