View of Panels on Washington Test Fence
“The viscous nature of several of the oils tested precluded the possibility of grinding each oil formula with the white pigment base selected; great heating of the paint mills and a paste of insufficient fineness was the result of an early attempt at this method. It was decided, therefore, to grind the standard pigment formula to a thick paste in the minimum amount of raw linseed oil. Subsequently a weighed amount of the white pigment base was thinned with the oil formula to be tested, to a standard viscosity, judged by the experienced master painter in charge of the practical application of the formulas as sufficiently heavy for third-coat work. When making the reductions with oil mixtures, an allowance was made for the amount of linseed oil already contained in the ground white pigment base.
“During the application of the first coat an equal amount of turpentine was added to each formula, in the proportion of one-half pint to a gallon of paint; in the application of the second coat there was added to each formula a like amount of an equal mixture of turpentine and the oil formula under test. The third coat was applied without the addition of thinners of any kind.
“It is well known that the time of drying and the condition of the dried film of any oil or mixture of drying or semi-drying oils will vary widely. It is for the purpose of causing oils to set up to a hard film in a short time that metallic driers in the form of salts of manganese and lead, soluble in oil, are added to a paint. Some oils require a large amount of drier, while others require only a very small amount. Those which require a large amount are apt, upon exposure, to be burned up by the drier, resulting in the formation of a powdered and disintegrated film. To add various types of drier or even differing amounts of a drier to the oils under test, seemed very unfair from every standpoint, and it was therefore decided to eliminate the drier question entirely, so as not to vitiate the results by bringing in a factor of this nature. The plan of omitting driers proved successful in the Atlantic City steel-panel paint tests, erected three years ago by the writer under the supervision of Committee A-5 of this Society.
“The systematic methods which are necessary when making paint tests were carefully followed. A standard weighed amount of white pigment paste was placed in a clean paint cup and thinned to the proper consistency with a weighed amount of the oil under test. Proper reductions were made, as before stated. Weighings of the paint, cup, and brush were made before and after application to the panel, in order to determine the quantity of paint used and the spreading power. A period of fifteen days was allowed between the application of successive coats, in order to give each formula sufficient time to dry thoroughly. Although several of the formulas remained tacky for over a week, all dried thoroughly in the time allotted. (Oils which when used alone have slow drying properties, have been found to yield good firm films when used with drying pigments such as lead and zinc.) The backs and edges of each panel were painted with two coats of the paint used on the face of the panel, so as to prevent the admission of moisture. After erection, the panels were numbered with aluminum figures pressed into the surface. Frequent inspections will be made, and at the proper time reports will be issued giving the results of the tests.
“During the painting of the panels considerable interesting data were collected, of which the following is a brief résumé:
“The hiding power of a paint is one of its most important requisites. It was found in the tests that some oils had the effect of lessening, while others had the effect of increasing the hiding power of the standard pigment formula. This may be due in part to the varying refractive indices of the oils used, as well as to the difference in the quantity of oil required in each test. Some oils were very viscous, while others were very light.
“The stiff working of heavy-bodied, blown, or heat-oxidized oils, produced films which in some cases gave a very glossy surface, even on the priming coat. Some of these resembled varnished work when finished. It will be of importance to watch these tests carefully for any signs of early breakdown, which might come from too thick a film. The treated Chinese wood oil paints worked rather stiff but produced very smooth films. The rosin oil paints became slightly lumpy on standing, but worked out to a smooth finish somewhat yellowish in color. The marine animal oils, especially the menhaden oil mixtures, dried to a film slightly flatter than straight linseed oil. Any odor which was present in the paints made from the animal oils seemed to disappear a few hours after application. The cotton seed and corn oil mixtures made the slowest drying paints, but at the end of the second week of the drying period they set up rapidly to firm films. Soya bean and perilla oils behaved like straight linseed oil, the former being a little slower and the latter slightly more rapid in drying properties. The perilla oil was made from one of the first importations into this country, and was dark in appearance. It made, however, a very easy-working and hard-drying paint.
“The oils used in the tests were obtained from reliable sources. After they were received, they were carefully analyzed. The results of the analyses appear in [Table 1].