Polishing Strokes.

The thickness of the silver thus deposited is about  1/200,000 of an inch. Gold leaf, when equally transparent, is estimated at the same fraction. The actual value of the amount on a 15 1/2 inch mirror is not quite a cent—the weight being less than 4 grains (239 milligrammes on one occasion when the silver was unusually thick), if the directions above given are followed.

Variations in thickness of this film of silver on various parts of the face of the mirror are consequently only small fractions of  1/200,000 of an inch, and are therefore of no optical moment whatever. If a glass has been properly silvered, and shows the sun of the same color and intensity through all parts of its surface, the most delicate optical tests will certainly fail to indicate any difference in figure between the silver and the glass underneath. The faintest peculiarities of local surface seen on the glass by the method of M. Foucault, will be reproduced on the silver.

The durability of these silver films varies, depending on the circumstances under which they are placed, and the method of preparation. Sulphuretted hydrogen tarnishes them quickly. Drops of water may split the silver off. Under certain circumstances, too, minute fissures will spread all over the surface of the silver, and it will apparently lose its adhesion to the glass. This phenomenon seems to be connected with a continued exposure to dampness, and is avoided by grinding the edge of the concave mirror flat, and keeping it covered when not in use with a sheet of flat plate glass. Heat seems to have no prejudicial effect, though it might have been supposed that the difference in expansibility would have overcome the mutual adhesion.

Generally silvered mirrors are very enduring, and will bear polishing repeatedly, if previously dried by heat. I have some which have been used as diagonal reflectors in the Newtonian, and have been exposed during a large part of the day to the heat of the sun concentrated by the 15 1/2 inch mirror. These small mirrors are never covered, and yet the one now in the telescope has been there a year, and has had the dusty film—like that which accumulates on glass—polished off it a dozen times.

In order to guard against tarnishing, experiments were at first made in gilding silver films, but were abandoned when found to be unnecessary. A partial conversion of the silver film into a golden one, when it will resist sulphuretted hydrogen, can be accomplished as follows: Take three grains of hyposulphite of soda, and dissolve it in an ounce of water. Add to it slowly a solution in water of one grain of chloride of gold. A lemon yellow liquid results, which eventually becomes clear. Immerse the silvered glass in it for twenty-four hours. An exchange will take place, and the film become yellowish. I have a piece of glass prepared in this way which remains unhurt in a box, where other pieces of plain silvered glass have changed some to yellow, some to blue, from exposure to coal gas.

I have also used silvered glass plates for daguerreotyping. They iodize beautifully if freshly polished, and owing probably to the absence of the usual copper alloy of silver plating, take impressions with very short exposures. The resulting picture has a rosy warmth, rarely seen in ordinary daguerreotypes. The only precaution necessary is in fixing to use an alcoholic solution of cyanide of potassium, instead of hyposulphite of soda dissolved in water. The latter has a tendency to split up the silver. The subsequent washing must be with diluted common alcohol.

Pictures obtained by this method will bear high magnifying powers without showing granulation. Unfortunately the exposure required for them in the telescope is six times as great as for a sensitive wet collodion, though the iodizing be carried to a lemon yellow, the bromizing to a rose red, and the plate be returned to the iodine.

(3.) Grinding and Polishing Glass.