Since this contrivance has been completed, all the previous difficulties have vanished. The moving of a plate can be accomplished with such precision, that when the atmosphere was steady, negatives were taken which have been enlarged to three feet in diameter.
The length of time that such a slide can be made to run is indefinite, depending in my case on the size of the diagonal flat mirror, and aperture of the eyepiece holder. I can follow the moon for nearly four minutes, but have never required to do so for more than fifty seconds. At the mouth of the instrument, where no secondary mirror is necessary, the time of running could be increased.
The setting of the frictionless slide in angular position is accomplished as follows: A ground glass plate is put into it, with the ground face toward the mirror. Upon this face a black line must have been traced, precisely parallel to the rod a. This may be accomplished by firmly fixing a pencil point against the ground side, and then drawing the frame d and glass past it, while the rest of the slide is held fast. As the moon passes across the field, the position of the apparatus must be changed, until one of the craters runs along the line from end to end. A cross line drawn perpendicular to the other, serves to adjust the rate of the clepsydra as we shall see, and when a crater is kept steadily on the intersection for twice or three times the time demanded to secure an impression, the adjustment may be regarded as complete.
It is necessary of course to expose the sensitive plate soon after, or the apparent path of the moon will have changed direction, unless indeed the slide is set to suit a future moment.
b. The Clepsydra.
My prime mover was a weight supported by a column of sand, which, when the sand was allowed to run out through a variable orifice below, could be made to descend with any desired velocity and yet with uniformity. In addition, by these means an unlimited power could be brought to bear, depending on the size of the weight. Previously it was proposed to use water, and compensate for the decrease in flow, as the column shortened, by a conical vessel; but it was soon perceived that as each drop of water escaped from the funnel-shaped vessel, only a corresponding weight would be brought into play. This is not the case with sand, for in this instance every grain that passes out causes the whole weight that is supported by the column to come into action. In the former instance a movement consisting of a series of periods of rest and periods of motion occurs, because power has to accumulate by floating weight lagging behind the descending water, and then suddenly overtaking it. In the latter case, on the contrary, there is a regular descent, all minor resistances in the slide being overcome by the steady application of the whole mass of the weight.
When these advantages in the flow of sand were ascertained, all the other prime movers were abandoned. Mercury-clocks, on the principle of the hydrostatic paradox, air-clocks, &c., in great variety, had been constructed.
Fig. 34.
The Sand-Clock.