The sand-clock consisted of a tube a (Fig. 34), eighteen inches long and one and a half in diameter, nearly filled with sand that had been raised to a bright red heat and sifted. Upon the top of the sand a leaden weight b was placed. At the bottom of the tube a peculiar stopcock, seen at (2) enlarged, regulated the flow, the amount passing depending on the size of the aperture d. This stopcock consisted of two thin plates, fixed at one end and free at the other. The one marked e is the adjusting lever, and its aperture moves past that in the plate g. The lever f serves to turn the sand off altogether, without disturbing the size of the other aperture, which, once set to the moon’s rate, varies but slightly in short times. A movable cover h, perforated to allow the cord i to pass through, closed the top, while the vessel k retained the escaped sand, which at suitable times was returned into the tube a, the weight b being temporarily lifted out. From the clock the cord i communicated motion to the frictionless slide, as shown in Fig. [33]. This cord should be as inelastic as possible, consistent with pliability, and well waxed.

One who has not investigated the matter would naturally suppose that the flow of sand in such a long tube would be much quicker when the tube was full than when nearly empty, and that certainly that result would occur when a heavy weight was put on the shifting mass. But in neither case have I been able to detect the slightest variation, for, although by shaking the tube a diminution of the space occupied by the sand may be caused, yet no increase of weight tried could accomplish the same reduction. These peculiarities seem to result from the sand arching as it were across the vessel, like shot in a narrow tube, and only yielding when the under supports are removed. In blasting, a heavy charge of gunpowder can be retained at the bottom of a hole, and made to split large masses of rock, by filling the rest of the hole with dry sand.

I believe that no prime mover is more suitable than a sand-clock for purposes where steady motion and a large amount of power are demanded. The simplicity, for instance, of a heliostat on this plan, the large size it might assume, and its small cost, would be great recommendations. In these respects its advantages over wheelwork are very apparent. The precision with which such a sand-clock goes may be appreciated when it is stated, that under a power of 300 a lunar crater can be kept bisected for many times the period required to photograph it. To secure the greatest accuracy in the rate of a sand-clock, some precautions must be taken. The tube should be free from dents, of uniform diameter, and very smooth or polished inside. Water must not be permitted to find access to the sand, and hygrometric varieties of that substance should be avoided, or their salts washed out. The sand should be burned to destroy organic matter, and so sifted as to retain grains nearly equal in size. The weight, which may be of lead, must be turned so as to go easily down the tube, and must be covered with writing paper or some other hard and smooth material, to avoid the proneness to adhesion of sand. A long bottle filled with mercury answers well as a substitute.

I have used in such clocks certain metallic preparations: Fine shot, on account of its equality of size, might do for a very large clock with a considerable opening below, but is unsuitable for a tube of the size stated above. There is, however, a method by which lead can be reduced to a divided condition, like fine gunpowder, when it may replace the sand. If that metal is melted with a little antimony, and while cooling is shaken in a box containing some plumbago, it breaks up at the instant of solidifying into a fine powder, which is about five times as heavy as sand. If after being sifted to select the grains of proper size, it is allowed to run through a small hole, the flow is seen to be entirely different from that of sand, looking as if a wire or solid rod were descending, and not an aggregation of particles. It is probable, therefore, that it would do better than sand for this purpose. I have not, however, given it a fair trial, because just at the time when the experiments with the sand-clock had reached this point, I determined to try a clepsydra as a prime mover.

The reason which led to this change was that it was observed on a certain occasion when the atmosphere was steady, that the photographs did not correspond in sharpness, being in fact no better than on other nights when there was a considerable flickering motion in the air. A further investigation showed that in these columns of sand there is apt to be a minute vibrating movement. At the plate-holder above this is converted into a series of arrests and advances. On some occasions, however, these slight deviations from continuous motion are entirely absent, and generally, indeed, they cannot be seen, if the parts of the image seem to vibrate on account of currents in the air. By the aid of the microscopic exaggeration described on a former page—which was subsequently put in practice—they may be observed easily, if present.

When the negative produced at the focus of the great mirror is intended to be enlarged to two feet or more in size, these movements injure it sensibly. A variety of expedients was resorted to in order to avoid them, but none proved on all occasions successful.

It is obvious that in a water-clock, where the mobility of the fluid is so much greater than that of solid grains, this difficulty would not arise. The following contrivance in which the fault of the ordinary clepsydra, in varying rate of flow as the column shortens, is avoided, was next made. With it the best results are attainable, and it seems to be practically perfect.

Fig. 35.