It is obvious that the amount of work which a horse can accomplish must vary greatly with the size and quality of the horse, and with the particular method by which its energy is applied. For the purposes of comparison, however, an arbitrary amount of work has been fixed upon as constituting what is called a horse-power. This amount is the equivalent of raising thirty-three thousand pounds of weight to the height of one foot in one minute. It would be hard to say just why this particular standard was fixed upon, since it certainly represents more than the average capacity of a horse. It is, however, a standard which long usage (it was first suggested by Watt, of steam-engine fame) has rendered convenient, and one which the machinist refers to constantly in speaking of the efficiency of the various types of artificial machines. All questions of the exact legitimacy of this particular standard aside, it was highly appropriate that the labor of the horse, which has made up so large a share of the labor of the past, and which is still so extensively utilized, should continue to be taken as the measuring standard of the world's work.
[IV]
THE WORK OF AIR AND WATER
The store of energy contained in the atmosphere and in the waters of the globe is inexhaustible. Its amount is beyond all calculation; or if it were vaguely calculated the figures would be quite incomprehensible from their very magnitude. It is not, however, an altogether simple matter to make this energy available for the purposes of useful work. We find that throughout antiquity comparatively little use was made of either wind or water in their application to machinery.
Doubtless the earliest use of air as a motive power was through the application of sails to boats. We know that the Phœnicians used a simple form of sail, and no doubt their example was followed by all the maritime peoples of subsequent periods. But the use of the sail even by the Phœnicians was as a comparatively unimportant accessory to the galaxies of oars, which formed the chief motive power. The elaboration of sails of various types, adequate in extent to propel large ships, and capable of being adjusted so as to take advantage of winds blowing from almost any quarter, was a development of the Middle Ages.
The possibilities of work with the aid of running water were also but little understood by the ancients. In the days of slave labor it was scarcely worth while to tax man's ingenuity to invent machines, since so efficient a one was provided by nature. Yet the properties of both air and water were studied by various mechanical philosophers, at the head of whom were Archimedes, whose work has already been referred to, and the famous Alexandrian, Ctesibius, whose investigations became familiar through the publications of his pupil, Hero.
Perhaps the most remarkable device invented by Ctesibius was a fire-engine, consisting of an arrangement of valves constituting a pump, and operating on the principle which is still in vogue. It is known, however, that the Egyptians of a much earlier period used buckets having valves in their bottoms, and these perhaps furnished the foundation for the idea of Ctesibius. It is unnecessary to give details of this fire-engine. It may be noted, however, that the principle of the lever is the one employed in its operation to gain power. A valve consists essentially of any simple hinged substance, arranged so that it may rise or fall, alternately opening and closing an aperture. A mere flap of leather, nailed on one edge, serves as a tolerably effective valve. At least one of the valves used by Ctesibius was a hinged piece of smooth metal. A piston fitted in a cylinder supplies suction when the lever is raised, and pressure when it is compressed, alternately opening the valve and closing the valve through which the water enters the tube. Meantime a second valve alternating with the first permits the water to enter the chamber containing air, which through its elasticity and pressure equalizes the force of the stream that is ejected from the chamber through the hose.