This primitive type of water wheel has been practically abandoned within the last generation, its place having been taken by the much more efficient type of wheel known as the turbine. This consists of a wheel, usually adjusted on a vertical axis, and acting on what is virtually the principle of a windmill. To gain a mental picture of the turbine in its simplest form, one might imagine the propelling screw of a steamship, placed horizontally in a tube, so that the water could rush against its blades. The tiny windmills which children often make by twisting pieces of paper illustrate the same principle. Of course, in its developed form the turbine is somewhat elaborated, in the aim to utilize as large a proportion of the energy of the falling water as is possible; but the principle remains the same.

The turbine wheel was invented by a Frenchman named Fourneyron, about three-quarters of a century ago (1827), but its great popularity, in America in particular, is a matter of the last twenty or thirty years. To-day it has virtually supplanted every other type of water wheel. To use any other is indeed a wasteful extravagance, as the perfected turbine makes available more than eighty per cent. of the kinetic energy of any mass of falling water. A turbine wheel two feet in diameter is able to do the work of an enormous wheel of the old type.

Turbine wheels are of several types, one operating in a closed tube to which air has no access, and another in an open space in the presence of air. The water may also be made to enter the turbine at the side or from below, thus serving to support the weight of the mechanism—a consideration of great importance in the case of such gigantic turbines as those that are employed at Niagara Falls, which we shall have occasion to examine in detail in a later chapter.

WATER WHEELS.

Fig. 1 shows a model of the so-called breast wheel, a familiar type of water wheel that has been in use since the time of the Romans. Figs. 2 and 3 show similar wheels as used to-day in Belgium. Fig. 4 shows a model of Fourneyron's turbine. This wheel was made in 1837, but the original turbine was introduced by Fourneyron in 1827. The turbine wheel has now almost supplanted the other forms of water wheel except in rural districts.

The power generated by a revolution of the turbine wheel may, of course, be utilized directly by belts or gearings attached to its axle, or it may be transferred to a distance, with the aid of a dynamo generating electricity. The latter possibility, which has only recently been developed, and which we shall have occasion to examine in detail in connection with our studies of the power at Niagara, gives a new field of usefulness to the turbine wheel, and makes it probable that this form of power will be vastly more used in the future than it has been in the past. Indeed, it would not be surprising were it ultimately to become the prime source of working energy as utilized in every department of the world's work.

Mr. Edward H. Sanborn, in an article on Motive Power Appliances in the Twelfth Census Report of the United States, comments upon the recent advances in the use of water wheels as follows:

"One notable advance in turbine construction has been the production of a type of wheel especially designed for operating under much higher heads of water than were formerly considered feasible for wheels of this type. Turbines are now built for heads ranging from 100 to 1,200 feet, and quite a number of wheels are in operation under heads of from 100 to 200 feet. This is an encroachment upon the field occupied almost exclusively by wheels variously known as the 'impulse,' 'impact,' 'tangential,' or 'jet' type, the principle of which is the impact of a powerful jet of water from a small nozzle upon a series of buckets mounted upon the periphery of a small wheel."